Last updated at Dec. 16, 2024 by Teachoo
Misc 14 If ๐ฅ โ(1+๐ฆ)+๐ฆ โ(1+๐ฅ) = 0 , for โ1 < ๐ฅ < 1, prove that ๐๐ฆ/๐๐ฅ = (โ1)/(1 + ๐ฅ)2 ๐ฅ โ(1+๐ฆ)+๐ฆ โ(1+๐ฅ) = 0 ๐ฅ โ(1+๐ฆ) = โ ๐ฆ โ(1+๐ฅ) Squaring both sides (๐ฅโ(1+๐ฆ) )^2 = (โ๐ฆ โ(1+๐ฅ))^2 ๐ฅ^2 (โ(1+๐ฆ ) )^2 = (โ๐ฆ)^2 (โ(1+๐ฅ))^2 ๐ฅ^2 (1+๐ฆ) = ๐ฆ^2 (1+๐ฅ) ๐ฅ^2+๐ฅ^2 ๐ฆ = ๐ฆ^2 + ๐ฆ^2 ๐ฅ ๐ฅ^2 โ ๐ฆ^2 = xy2 โ x2y (๐ โ๐) (๐ฅ+๐ฆ)=๐ฅ๐ฆ (๐ฆ โ๐ฅ) โ(๐ โ๐) (๐ฅ+๐ฆ)=๐ฅ๐ฆ (๐ฆ โ๐ฅ) โ(๐ฅ+๐ฆ) = ๐ฅ๐ฆ โ๐ฅ โ๐ฆ = ๐ฅ๐ฆ โ๐ฅ = ๐ฅ๐ฆ+๐ฆ โ๐ฅ = (๐ฅ+1) ๐ฆ ๐ = (โ๐)/(๐ + ๐) Differentiating ๐ค.๐.๐ก.๐ฅ. ๐๐ฆ/๐๐ฅ = ๐/๐๐ฅ ((โ๐ฅ)/(๐ฅ + 1)) Using quotient rule As (๐ข/๐ฃ)โฒ = (๐ข^โฒ ๐ฃ โ ๐ฃ^โฒ ๐ข)/๐ฃ^2 where u = โx & v = x + 1 ๐๐ฆ/๐๐ฅ = (๐(โ๐ฅ)/๐๐ฅ (๐ฅ + 1) โ ๐(๐ฅ + 1)/๐๐ฅ. (โ๐ฅ))/(๐ฅ + 1)^2 ๐๐ฆ/๐๐ฅ = (โ1 (๐ฅ + 1) + (1 + 0) ๐ฅ)/(๐ฅ + 1)^2 ๐๐ฆ/๐๐ฅ = (โ๐ฅ โ 1 + ๐ฅ)/(๐ฅ + 1)^2 ๐ ๐/๐ ๐ = (โ๐)/(๐ + ๐)^๐
Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important You are here
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo