Check sibling questions

 


Transcript

Misc 14 If ๐‘ฅ โˆš(1+๐‘ฆ)+๐‘ฆ โˆš(1+๐‘ฅ) = 0 , for โ€“1 < ๐‘ฅ < 1, prove that ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’1)/(1 + ๐‘ฅ)2 ๐‘ฅ โˆš(1+๐‘ฆ)+๐‘ฆ โˆš(1+๐‘ฅ) = 0 ๐‘ฅ โˆš(1+๐‘ฆ) = โ€“ ๐‘ฆ โˆš(1+๐‘ฅ) Squaring both sides (๐‘ฅโˆš(1+๐‘ฆ) )^2 = (โˆ’๐‘ฆ โˆš(1+๐‘ฅ))^2 ๐‘ฅ^2 (โˆš(1+๐‘ฆ ) )^2 = (โˆ’๐‘ฆ)^2 (โˆš(1+๐‘ฅ))^2 ๐‘ฅ^2 (1+๐‘ฆ) = ๐‘ฆ^2 (1+๐‘ฅ) ๐‘ฅ^2+๐‘ฅ^2 ๐‘ฆ = ๐‘ฆ^2 + ๐‘ฆ^2 ๐‘ฅ ๐‘ฅ^2 โˆ’ ๐‘ฆ^2 = xy2 โˆ’ x2y (๐’™ โˆ’๐’š) (๐‘ฅ+๐‘ฆ)=๐‘ฅ๐‘ฆ (๐‘ฆ โˆ’๐‘ฅ) โˆ’(๐’š โˆ’๐’™) (๐‘ฅ+๐‘ฆ)=๐‘ฅ๐‘ฆ (๐‘ฆ โˆ’๐‘ฅ) โˆ’(๐‘ฅ+๐‘ฆ) = ๐‘ฅ๐‘ฆ โˆ’๐‘ฅ โˆ’๐‘ฆ = ๐‘ฅ๐‘ฆ โˆ’๐‘ฅ = ๐‘ฅ๐‘ฆ+๐‘ฆ โˆ’๐‘ฅ = (๐‘ฅ+1) ๐‘ฆ ๐’š = (โˆ’๐’™)/(๐’™ + ๐Ÿ) Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘/๐‘‘๐‘ฅ ((โˆ’๐‘ฅ)/(๐‘ฅ + 1)) Using quotient rule As (๐‘ข/๐‘ฃ)โ€ฒ = (๐‘ข^โ€ฒ ๐‘ฃ โˆ’ ๐‘ฃ^โ€ฒ ๐‘ข)/๐‘ฃ^2 where u = โˆ’x & v = x + 1 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(โˆ’๐‘ฅ)/๐‘‘๐‘ฅ (๐‘ฅ + 1) โˆ’ ๐‘‘(๐‘ฅ + 1)/๐‘‘๐‘ฅ. (โˆ’๐‘ฅ))/(๐‘ฅ + 1)^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’1 (๐‘ฅ + 1) + (1 + 0) ๐‘ฅ)/(๐‘ฅ + 1)^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’๐‘ฅ โˆ’ 1 + ๐‘ฅ)/(๐‘ฅ + 1)^2 ๐’…๐’š/๐’…๐’™ = (โˆ’๐Ÿ)/(๐’™ + ๐Ÿ)^๐Ÿ

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo