Check sibling questions

 


Transcript

Misc 12 Find 𝑑𝑦/𝑑π‘₯, if 𝑦=12 (1 –cos⁑𝑑 ), π‘₯=10 (𝑑 –sin⁑𝑑 ),βˆ’πœ‹/2 " "<π‘₯< πœ‹/2 Here, 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/𝑑𝑑)/(𝑑π‘₯/𝑑𝑑) Calculating π’…π’š/𝒅𝒕 𝑦=12 (1 –cos⁑𝑑 ) 𝑦=12 βˆ’12 cos⁑𝑑 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑𝑦/𝑑𝑑 = 𝑑(12 βˆ’ 12 cos⁑𝑑 )/𝑑𝑑 𝑑𝑦/𝑑𝑑 = 𝑑(12)/𝑑𝑑 βˆ’ 12 𝑑(cos⁑𝑑 )/𝑑𝑑 𝑑𝑦/𝑑𝑑 = 0 βˆ’ 12 (βˆ’sin⁑𝑑 ) π’…π’š/𝒅𝒕 = 𝟏𝟐 𝐬𝐒𝐧⁑𝒕 Calculating 𝒅𝒙/𝒅𝒕 π‘₯=10 (𝑑 –sin⁑𝑑 ) π‘₯=10𝑑 βˆ’10 sin⁑𝑑 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑π‘₯/𝑑𝑑 = 𝑑(10 βˆ’ 10 sin⁑𝑑 )/𝑑𝑑 𝑑/𝑑𝑑 (10t βˆ’ 10 sint) 𝑑π‘₯/𝑑𝑑 = 𝑑(10 𝑑)/𝑑𝑑 βˆ’ 𝑑(10 sin⁑𝑑 )/𝑑𝑑 𝑑π‘₯/𝑑𝑑 = 10βˆ’10 cos⁑𝑑 𝒅𝒙/𝒅𝒕 = 𝟏𝟎(πŸβˆ’π’„π’π’”β‘π’• ) Therefore 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/𝑑𝑑)/(𝑑π‘₯/𝑑𝑑) 𝑑𝑦/𝑑π‘₯ = (12 sin⁑𝑑)/10(1 βˆ’γ€– cos〗⁑𝑑 ) 𝑑𝑦/𝑑π‘₯ = (6 π’”π’Šπ’β‘π’•)/(5 (𝟏 βˆ’γ€– 𝒄𝒐𝒔〗⁑𝒕 ) ) 𝑑𝑦/𝑑π‘₯ = (6 . 𝟐 〖𝐬𝐒𝐧 〗⁑〖𝒕/πŸγ€— 𝒄𝒐𝒔⁑〖 𝒕/πŸγ€—)/(5 (𝟐 γ€–π’”π’Šπ’γ€—^πŸβ‘γ€–π’•/πŸγ€— ) ) 𝑑𝑦/𝑑π‘₯ = (6 cos⁑〖 𝑑/2γ€—)/(5 γ€–sin 〗⁑〖𝑑/2γ€— ) π’…π’š/𝒅𝒙 = πŸ”/πŸ“ 𝒄𝒐𝒕 𝒕/𝟐 We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by πœƒ/2 sin ΞΈ = 2 π’”π’Šπ’β‘γ€–πœ½/πŸγ€— π’„π’π’”β‘γ€–πœ½/πŸγ€— and cos 2ΞΈ = 1 – 2sin2 ΞΈ Replacing ΞΈ by πœƒ/2 cos ΞΈ = 1 – 2sin2 πœƒ/2 1 – cos ΞΈ = 2sin2 𝜽/𝟐

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo