Check sibling questions

   


Transcript

Misc 11 Differentiate w.r.t. x the function, ๐‘ฅ^(๐‘ฅ^2โˆ’ 3)+(๐‘ฅโˆ’3)๐‘ฅ^2, for ๐‘ฅ > 3 Let ๐‘ฆ=๐‘ฅ^(๐‘ฅ^2โˆ’ 3)+(๐‘ฅโˆ’3)^(๐‘ฅ^2 ) And let ๐‘ข=๐‘ฅ^(๐‘ฅ^2โˆ’ 3) , ๐‘ฃ =(๐‘ฅโˆ’3)^(๐‘ฅ^2 ) Now, ๐’š = ๐’–+๐’— Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘ (๐‘ข + ๐‘ฃ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ Calculating ๐’…๐’–/๐’…๐’™ ๐‘ข = ๐‘ฅ^(๐‘ฅ^2โˆ’ 3) Taking log on both sides log ๐‘ข=logโกใ€–๐‘ฅ^(๐‘ฅ^2โˆ’ 3) ใ€— log ๐‘ข=ใ€–(๐‘ฅใ€—^2โˆ’ 3). logโก๐‘ฅ Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ฅ = ๐‘‘(ใ€–(๐‘ฅใ€—^2โˆ’ 3) logโก๐‘ฅ )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ฅ . ๐‘‘๐‘ข/๐‘‘๐‘ข = ๐‘‘(ใ€–(๐‘ฅใ€—^2 โˆ’ 3) logโก๐‘ฅ )/๐‘‘๐‘ฅ " " ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = ๐‘‘(ใ€–(๐‘ฅใ€—^2โˆ’ 3) logโก๐‘ฅ )/๐‘‘๐‘ฅ " " 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = ๐‘‘(ใ€–(๐‘ฅใ€—^2โˆ’ 3) logโก๐‘ฅ )/๐‘‘๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (๐‘‘ใ€–(๐‘ฅใ€—^2โˆ’ 3) )/๐‘‘๐‘ฅ . ใ€– logใ€—โก๐‘ฅ + ๐‘‘(logโก๐‘ฅ )/๐‘‘๐‘ฅ . ใ€–(๐‘ฅใ€—^2โˆ’ 3) 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (2๐‘ฅ โˆ’0) ใ€– logใ€—โก๐‘ฅ + 1/๐‘ฅ ร— ใ€–(๐‘ฅใ€—^2โˆ’ 3) 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = 2๐‘ฅ . logโก๐‘ฅ + (๐‘ฅ^2โˆ’ 3)/๐‘ฅ ๐‘‘๐‘ข/๐‘‘๐‘ฅ = u (2๐‘ฅ "." logโก๐‘ฅ "+ " (๐‘ฅ^2โˆ’ 3)/๐‘ฅ) ๐’…๐’–/๐’…๐’™ = ๐’™^(๐’™^๐Ÿโˆ’ ๐Ÿ‘) (๐Ÿ๐’™ "." ๐’๐’๐’ˆโก๐’™ "+ " (๐’™^๐Ÿโˆ’ ๐Ÿ‘)/๐’™) Calculating ๐’…๐’—/๐’…๐’™ ๐‘ฃ = (๐‘ฅโˆ’3)๐‘ฅ^2 Taking log on both sides log ๐‘ฃ=logโกใ€–(๐‘ฅโˆ’3)^(๐‘ฅ^2 ) ใ€— log ๐‘ฃ=ใ€–๐‘ฅ^2 . logใ€—โกใ€– (๐‘ฅโˆ’3)ใ€— Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฅ = (๐‘‘(ใ€–๐‘ฅ^2. logใ€—โกใ€– (๐‘ฅ โˆ’ 3)ใ€— ) )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฅ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฃ = (๐‘‘(ใ€–๐‘ฅ^2. logใ€—โกใ€– (๐‘ฅโˆ’3)ใ€— ) )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = (๐‘‘(ใ€–๐‘ฅ^2. logใ€—โกใ€– (๐‘ฅโˆ’3)ใ€— ) )/๐‘‘๐‘ฅ 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = (๐‘‘(ใ€–๐‘ฅ^2. logใ€—โกใ€– (๐‘ฅโˆ’3)ใ€— ) )/๐‘‘๐‘ฅ 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘‘(๐‘ฅ^2 )/๐‘‘๐‘ฅ . log (๐‘ฅโˆ’3) + ๐‘‘(log" " (๐‘ฅ โˆ’ 3))/๐‘‘๐‘ฅ . ๐‘ฅ^2 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = 2๐‘ฅ . log (๐‘ฅโˆ’3) + 1/((๐‘ฅ โˆ’ 3) ). (๐‘‘(๐‘ฅ โˆ’ 3)" " )/๐‘‘๐‘ฅ . ๐‘ฅ^2 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = 2๐‘ฅ . log (๐‘ฅโˆ’3) + 1/((๐‘ฅ โˆ’ 3) ) . ๐‘ฅ^2 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = 2๐‘ฅ. log (๐‘ฅโˆ’3) + ๐‘ฅ^2/(๐‘ฅ โˆ’3) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฃ (2๐‘ฅ". " log" " (๐‘ฅโˆ’3)" + " ๐‘ฅ^2/(๐‘ฅ โˆ’3)) ๐’…๐’—/๐’…๐’™ = (๐’™โˆ’๐Ÿ‘)๐’™^๐Ÿ (๐Ÿ๐’™". " ๐ฅ๐จ๐ " " (๐’™โˆ’๐Ÿ‘)" + " ๐’™^๐Ÿ/(๐’™ โˆ’๐Ÿ‘)) Now, ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐’™^(๐’™^๐Ÿโˆ’ ๐Ÿ‘) ((๐’™^๐Ÿโˆ’ ๐Ÿ‘)/๐’™+๐Ÿ๐’™ ๐ฅ๐จ๐ โก๐’™ ) + (๐’™โˆ’๐Ÿ‘)๐’™^๐Ÿ (๐’™^๐Ÿ/(๐’™ โˆ’๐Ÿ‘)+๐Ÿ๐’™ .๐ฅ๐จ๐ โก(๐’™ โˆ’๐Ÿ‘) )

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo