Check sibling questions

 


Transcript

Misc 5 Differentiate ๐‘ค.๐‘Ÿ.๐‘ก. ๐‘ฅ the function, (ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2)/โˆš(2๐‘ฅ+7 ) , โ€“ 2 < ๐‘ฅ < 2 Let ๐‘ฆ= (ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2)/โˆš(2๐‘ฅ+7 ) Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก. ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘/๐‘‘๐‘ฅ ((ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2)/โˆš(2๐‘ฅ+7 )) Using Quotient rule As (๐‘ข/๐‘ฃ)^โ€ฒ = (๐‘ข^โ€ฒ ๐‘ฃ โˆ’ ๐‘ฃ^โ€ฒ ๐‘ข)/๐‘ฃ^2 where u = cosโˆ’1 ๐‘ฅ/2 & v = โˆš(2๐‘ฅ+7) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2)/๐‘‘๐‘ฅ . โˆš(2๐‘ฅ + 7 ) โˆ’ ๐‘‘(โˆš(2๐‘ฅ + 7 ))/๐‘‘๐‘ฅ . ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 )/(โˆš(2๐‘ฅ + 7 ))^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ((โˆ’1)/โˆš(1 โˆ’(๐‘ฅ/2)^2 ) . ๐‘‘(๐‘ฅ/2)/๐‘‘๐‘ฅ โˆš(2๐‘ฅ + 7 ) โˆ’ 1/(2โˆš(2๐‘ฅ + 7)) . ๐‘‘(2๐‘ฅ + 7)/๐‘‘๐‘ฅ . ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 )/(โˆš(2๐‘ฅ + 7 ))^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ((โˆ’1)/โˆš(ใ€–(4 โˆ’ ๐‘ฅ)/4ใ€—^2 ) . 1/2 โˆš(2๐‘ฅ + 7 ) โˆ’ 1/(2โˆš(2๐‘ฅ + 7)) . (2 + 0) . ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 )/((2๐‘ฅ + 7) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ((โˆ’2)/โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 ) . 1/2 โˆš(2๐‘ฅ + 7 ) โˆ’ 1/(2โˆš(2๐‘ฅ + 7)) . 2 . ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 )/((2๐‘ฅ + 7) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ((โˆ’ โˆš(๐Ÿ๐’™ + ๐Ÿ• ))/( โˆš(ใ€–๐Ÿ’ โˆ’ ๐’™ใ€—^๐Ÿ )) โˆ’ (. ใ€–๐’„๐’๐’”ใ€—^(โˆ’๐Ÿ ) ๐’™/๐Ÿ)/โˆš(๐Ÿ๐’™ + ๐Ÿ•) )/((2๐‘ฅ + 7) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’ โˆš(2๐‘ฅ + 7 ) ( โˆš(2๐‘ฅ + 7 )) โˆ’ ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 ))/((2๐‘ฅ + 7) (โˆš(2๐‘ฅ + 7 )) (โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 )) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ใ€–โˆ’(โˆš(2๐‘ฅ + 7 ))ใ€—^2/((2๐‘ฅ + 7) ( โˆš(2๐‘ฅ + 7 )) (โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 )) ) "+ " (ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 ))/((2๐‘ฅ + 7) ( โˆš(2๐‘ฅ + 7 )) (โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 )) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’(2๐‘ฅ + 7))/((2๐‘ฅ + 7) โˆš(2๐‘ฅ + 7 ) โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 )) "+ " (ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 )/((2๐‘ฅ + 7) โˆš(2๐‘ฅ + 7 ) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’1)/(โˆš(2๐‘ฅ + 7 ) โˆš(ใ€–4 โˆ’ ๐‘ฅใ€—^2 )) "+ " (ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1 ) ๐‘ฅ/2 )/((2๐‘ฅ + 7) (2๐‘ฅ + 7)^(1/2) ) ๐’…๐’š/๐’…๐’™ = (โˆ’๐Ÿ)/(โˆš(๐Ÿ๐’™ + ๐Ÿ•) โˆš(ใ€–๐Ÿ’ โˆ’ ๐’™ใ€—^๐Ÿ ))โˆ’(ใ€–๐’„๐’๐’”ใ€—^(โˆ’๐Ÿ ) ๐’™/๐Ÿ )/((๐Ÿ๐’™ + ๐Ÿ•)^(๐Ÿ‘/๐Ÿ) )

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo