

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.1
Ex 7.1, 2
Ex 7.1, 3
Ex 7.1, 4
Ex 7.1, 5
Ex 7.1, 6
Ex 7.1, 7
Ex 7.1, 8
Ex 7.1, 9
Ex 7.1, 10 Important
Ex 7.1, 11
Ex 7.1, 12
Ex 7.1, 13 Important
Ex 7.1, 14
Ex 7.1, 15
Ex 7.1, 16 Important
Ex 7.1, 17
Ex 7.1, 18 Important
Ex 7.1, 19
Ex 7.1, 20
Ex 7.1, 21 (MCQ)
Ex 7.1, 22 (MCQ) Important You are here
Last updated at May 29, 2023 by Teachoo
Ex 7.1, 22 If 𝑑/𝑑𝑥 f(x) = 4x3 − 3/𝑥4 such that f(2) = 0, then f(x) is x4 + 1/𝑥3 − 129/8 (B) x3 + 1/𝑥4 + 129/8 (C) x4 + 1/𝑥3 + 129/8 (D) x3 + 1/𝑥4 − 129/8 Given 𝑑/𝑑𝑥 f(x) = 4x3 − 3/𝑥4 Integrating both sides ∫1▒〖𝑑/𝑑𝑥 𝑓(𝑥) 〗=∫1▒(4𝑥^3− 3/𝑥^4 )𝑑𝑥 ∫1▒𝑑/𝑑𝑥 𝑓(𝑥)=4∫1▒〖𝑥^3 𝑑𝑥〗−3∫1▒〖1/𝑥^4 𝑑𝑥〗 𝑓(𝑥)=4∫1▒〖𝑥^3 𝑑𝑥〗−3∫1▒〖𝑥^(−4) 𝑑𝑥〗 𝑓(𝑥)=4 𝑥^(3 + 1)/(3 + 1)−3 𝑥^(−4 + 1)/(−4 + 1)+𝐶 𝑓(𝑥)=4 𝑥^4/4 − 3 𝑥^(−3)/(−3)+𝐶 𝑓(𝑥)=𝑥^4+𝑥^(−3)+𝐶 𝑓(𝑥)=𝑥^4+ 1/𝑥^3 +𝐶 Given 𝑓(2)=0 Putting 𝑥=2 in (1) 𝑓(2)=(2)^4+ 1/(2)^3 +𝐶 0=16+ 1/8 +𝐶 0= (128 + 1)/8 +𝐶 0= 129/8 +𝐶 𝐶=(−129)/8 Putting 𝐶=(−129)/8 in (1) 𝑓(𝑥)=𝑥^4+ 1/𝑥^3 +𝐶 ⇒ 𝒇(𝒙)=𝒙^𝟒+ 𝟏/𝒙^𝟑 −𝟏𝟐𝟗/𝟖 ∴ Option (A) is correct.