Miscellaneous

Misc 1
Important

Misc 2 Important

Misc 3 Important

Misc 4

Misc 5 Important

Misc 6 Important

Misc 7

Misc 8 Important

Misc 9 Important

Misc 10 Important

Misc 11 Important

Misc 12 Important

Misc 13

Misc 14 Important

Misc 15 Important You are here

Misc 16 (MCQ)

Question 1 (a) Deleted for CBSE Board 2024 Exams

Question 1 (b) Important Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 (MCQ) Important Deleted for CBSE Board 2024 Exams

Question 5 (MCQ) Important Deleted for CBSE Board 2024 Exams

Question 6 (MCQ) Deleted for CBSE Board 2024 Exams

Question 7 (MCQ) Important Deleted for CBSE Board 2024 Exams

Question 8 (MCQ) Important Deleted for CBSE Board 2024 Exams

Last updated at April 16, 2024 by Teachoo

Misc 15 Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is 4/27 𝜋ℎ3 tan2 𝛼Given Height of cone = h Semi-vertical angle of cone = 𝜶 Let Radius of Cylinder = 𝒙 Now, Height of cylinder = OO’ = PO – PO’ In ∆AP𝑂’ tan α = (𝐴𝑂^′)/(𝑃𝑂^′ ) tan α = 𝑥/(𝑃𝑂^′ ) PO’ = 𝑥/tanα" " PO’ = 𝒙 cot𝜶 Now Height of cylinder = OO’ = PO – PO’ = h – 𝒙 cot 𝜶 We need to maximize volume of cylinder Let V be the volume of cylinder V = π (𝑟𝑎𝑑𝑖𝑢𝑠 )^2 (ℎ𝑒𝑖𝑔ℎ𝑡) V = π (𝐴^′ 𝑂^′ )^2 (𝑂 𝑂′) V = π 𝑥^2 (ℎ−𝑥 cotα ) V = 𝝅𝒉𝒙^𝟐−𝝅 𝒄𝒐𝒕𝜶 𝒙^𝟑 Differentiating w.r.t 𝑥 𝒅𝑽/𝒅𝒙=𝑑(𝜋ℎ𝑥^2 − 𝜋 cotα 𝑥^3 )/𝑑𝑥 𝑑𝑉/𝑑𝑥= π h(𝑑(𝑥)^2)/𝑑𝑥−𝜋 cot〖α.(𝑑(𝑥)^3)/𝑑𝑥〗 𝑑𝑉/𝑑𝑥= πh. 2𝑥 – π cot α. 3𝑥2 𝑑𝑉/𝑑𝑥= 2πh𝑥 – 3π cot α 𝑥2 Putting 𝒅𝑽/𝒅𝒙= 0 2π h 𝑥 – 3π cot α 𝑥2 = 0 3π cot α 𝑥2 = 2π h 𝑥 𝑥 = (2𝜋ℎ 𝑥)/(3𝜋 cot〖 α.𝑥〗 ) 𝒙 = 𝟐𝒉/(𝟑 𝒄𝒐𝒕〖 𝜶〗 ) Now finding (𝒅^𝟐 𝑽)/(𝒅𝒙^𝟐 ) (𝑑^2 𝑉)/(𝑑𝑥^2 )= 𝑑(2𝜋 ℎ𝑥 − 3𝜋 𝑐𝑜𝑡α . 〖 𝑥〗^2 )/𝑑𝑥 (𝑑^2 𝑉)/𝑑𝑥= 2πh – 3π cot α . 2𝑥 (𝑑^2 𝑉)/(𝑑𝑥^2 )= 2πh – 6π cot α . 𝑥 Putting value of 𝑥 = 2ℎ/(3 𝑐𝑜𝑡α ) (𝑑^2 𝑉)/(𝑑𝑥^2 )= 2πh – 6π cot α × 2ℎ/(3 𝑐𝑜𝑡α ) (𝑑^2 𝑉)/(𝑑𝑥^2 )= 2πh – 4πh (𝑑^2 𝑉)/(𝑑𝑥^2 )= –2πh Since (𝒅^𝟐 𝑽)/(𝒅𝒙^𝟐 )<𝟎 for 𝑥 = 2ℎ/(3 𝑐𝑜𝑡α ) ∴ Volume is maximum for 𝑥 = 2ℎ/(3 𝑐𝑜𝑡α ) We need to find Height and Volume For Height Height of cylinder = 𝒉 – 𝒙 cot 𝜶 = ℎ − cot 𝛼 × 2ℎ/(3 𝑐𝑜𝑡〖 𝛼〗 ) = ℎ − 2ℎ/3 = 𝒉/𝟑 Hence, Height of cylinder is one third of cone Finding Maximum Volume V = π 𝑥2 (ℎ −𝑥 cotα ) V = π (2ℎ/(3 cotα ))^2 (ℎ−2ℎ/(3 cotα ) ×cotα ) V = π ((4ℎ^2)/(9 〖 cot〗^2α ))(ℎ−2ℎ/3) V = π ((4ℎ^2)/(9 cot^2α ))(ℎ/3) V = 4/27 ((𝜋ℎ^3)/cot^2α ) V = 𝟒/𝟐𝟕 𝝅𝒉^𝟑.〖𝒕𝒂𝒏〗^𝟐𝜶 Thus, greatest volume of cylinder is 4/27 𝜋ℎ^3 tan^2𝛼