

Miscellaneous
Misc 1 (b) Important Deleted for CBSE Board 2022 Exams
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 Important
Misc 14 Important You are here
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Misc. 19 (MCQ) Deleted for CBSE Board 2022 Exams
Misc 20 (MCQ) Important
Misc 21 (MCQ) Important
Misc 22 (MCQ)
Misc. 23 (MCQ) Important
Misc 24 (MCQ) Important
Last updated at April 19, 2021 by Teachoo
Misc 14 Find the absolute maximum and minimum values of the function f given by f (π₯) = cos2 π₯ + sinβ‘π₯, π₯ β [0, π]f(π₯)=cos^2 π₯+sin π₯ , π₯ β [0 , π] Finding fβ(π) fβ(π₯)= π(cos^2β‘γπ₯ + sinβ‘π₯ γ )/ππ₯ = 2cos π₯. π(cos π₯)/ππ₯ + cos π₯ = 2cos π₯(βsin π₯)+cosβ‘π₯ = cos π (βππ¬π’π§ π+π) Putting fβ(π) = 0 cos π₯ (β2 sinβ‘γπ₯+1γ )=0 π₯ = π/6 , 5π/6 & π/2 are Critical points. cos π = 0 cos π₯ = 0 cos π₯ = cos π/2 π = π /π β 2 sin π + 1 = 0 β 2 sin π₯ = β1 sin π₯ = (β1)/(β2) sin π₯ = 1/2 sin π₯ = sin π/6 π = π /π Also, π = π βπ/6=ππ /π Since our interval is π β [0, π] Critical points are π₯=π, π/6 , π/2 ,5π/6,π Hence Absolute maximum value = π/π & Absolute minimum value = 1