Check sibling questions

Misc 14 - Find absolute max, min values f(x) = cos2 x + sin x

Misc 14 - Chapter 6 Class 12 Application of Derivatives - Part 2
Misc 14 - Chapter 6 Class 12 Application of Derivatives - Part 3

This video is only available for Teachoo black users

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Misc 11 Find the absolute maximum and minimum values of the function f given by f (π‘₯) = cos2 π‘₯ + sin⁑π‘₯, π‘₯ ∈ [0, πœ‹]f(π‘₯)=cos^2 π‘₯+sin π‘₯ , π‘₯ ∈ [0 , πœ‹] Finding f’(𝒙) f’(π‘₯)= 𝑑(cos^2⁑〖π‘₯ + sin⁑π‘₯ γ€— )/𝑑π‘₯ = 2cos π‘₯. 𝑑(cos π‘₯)/𝑑π‘₯ + cos π‘₯ = 2cos π‘₯(βˆ’sin π‘₯)+cos⁑π‘₯ = cos 𝒙 (βˆ’πŸπ¬π’π§ 𝒙+𝟏) Putting f’(𝒙) = 0 cos π‘₯ (βˆ’2 sin⁑〖π‘₯+1γ€— )=0 π‘₯ = πœ‹/6 , 5πœ‹/6 & πœ‹/2 are Critical points. cos 𝒙 = 0 cos π‘₯ = 0 cos π‘₯ = cos πœ‹/2 𝒙 = 𝝅/𝟐 – 2 sin 𝒙 + 1 = 0 – 2 sin π‘₯ = –1 sin π‘₯ = (βˆ’1)/(βˆ’2) sin π‘₯ = 1/2 sin π‘₯ = sin πœ‹/6 𝒙 = 𝝅/πŸ” Also, 𝒙 = πœ‹ βˆ’πœ‹/6=πŸ“π…/πŸ” Since our interval is 𝒙 ∈ [0, πœ‹] Critical points are π‘₯=𝟎, πœ‹/6 , πœ‹/2 ,5πœ‹/6,𝝅 Hence Absolute maximum value = πŸ“/πŸ’ & Absolute minimum value = 1

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.