Miscellaneous

Misc 1 (a)
Deleted for CBSE Board 2022 Exams

Misc 1 (b) Important Deleted for CBSE Board 2022 Exams

Misc 2 Important

Misc 3 Important

Misc 4

Misc 5 Important

Misc 6 Important

Misc 7

Misc 8 Important

Misc 9 Important You are here

Misc 10

Misc 11 Important

Misc 12 Important

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16

Misc 17 Important

Misc 18 Important

Misc. 19 (MCQ) Deleted for CBSE Board 2022 Exams

Misc 20 (MCQ) Important

Misc 21 (MCQ) Important

Misc 22 (MCQ)

Misc. 23 (MCQ) Important

Misc 24 (MCQ) Important

Chapter 6 Class 12 Application of Derivatives (Term 1)

Serial order wise

Last updated at April 19, 2021 by Teachoo

Misc 9 A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m3. If building of tank costs Rs 70 per sq. meters for the base and Rs 45 per square meter for sides. What is the cost of least expensive tank?Given Depth of tank = h = 2 m & Volume of tank = V = 8 m3 Let Length of Tank = š m Breadth of Tank = š m We know that Volume of tank = Length Ć Breadth Ć Height 8 = 2 Ć š„ Ć š¦ 4 = š„š¦ š = š/š Given Building tank costs Rs. 70 per sq. meter for base Area of base = Length Ć Breadth Area of base = š„š¦ ā“ Cost of base = 70š„š¦ Also given Cost is 45 per square meter for sides Area of sides = 2(āš+āš) = 2(2š„+2š¦) = 2 Ć 2(š„+š¦) = 4(š+š) Therefore, Cost of making sides = 45[4(š„+š¦)] = 180 (š+š) Let C be the total cost of tank C (š) = Cost of Base + Cost of Sides C (š„) = 70š„š¦ + 180 (š„+š¦) C (š„) = 70 Ć š„ Ć4/š„ + 180 (š„+4/š„) C (š„) = 280 + 180 (š„+4/š„) C (š„) = 280 + 180 (š+šš^(āš) ) We need to minimize cost of tank Finding C(x)ā C(š„) = 280 + 180 (š„+4š„^(ā1) ) Differentiating w.r.t x Cā(š„) = š(280 + 180(š„ + 4š„^(ā1) ))/šš„ Cā(š„)=0+180(1+(ā1)4š„^(ā1ā1) ) Cā(š„)=180(1ā4š„^(ā2) ) Cā(š)=ššš(šāš/š^š ) Putting Cā(š)=š 180 (1ā4/š„^2 )=0 (1ā4/š„^2 )=0 ((š„^2 ā 4))/š„^2 =0 š„2 ā 4 = 0 (š„ā2)(š„+2)=0 So, š„ = 2 or š„ = ā2 Since length of side cannot be negative ā“ š = 2 only Finding Cāā(š) Cā(š„)=180(1ā4š„^(ā2) ) Differentiating w.r.t š„ Cāā(š)=š(180(1 ā 4š„^(ā2) ))/šš„ = 180(0ā4(ā2) š„^(ā2ā1) ) = 180 (8š„^(ā3) ) = 1440 š„-3 = šššš/š^š Putting š = 2 Cāā (2) =1440/(2)^3 > 0 Since š^ā²ā² > 0 for x = 2 Thus, C is minimum at x = 2 Thus, Least cost of construction = C(2) = 280 + 180 (š„+4š„^(ā1) ) = 280 + 180 (2+4/2) = 280 + 180 (2+2) = 280 + 180 (4) = 280 + 720 = 1000 Hence, least cost of construction is Rs 1,000