Misc 11 - Find absolute max, min values f(x) = cos2 x + sin x - Miscellaneous

part 2 - Misc 11 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Misc 11 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Misc 11 Find the absolute maximum and minimum values of the function f given by f (π‘₯) = cos2 π‘₯ + sin⁑π‘₯, π‘₯ ∈ [0, πœ‹]f(π‘₯)=cos^2 π‘₯+sin π‘₯ , π‘₯ ∈ [0 , πœ‹] Finding f’(𝒙) f’(π‘₯)= 𝑑(cos^2⁑〖π‘₯ + sin⁑π‘₯ γ€— )/𝑑π‘₯ = 2cos π‘₯. 𝑑(cos π‘₯)/𝑑π‘₯ + cos π‘₯ = 2cos π‘₯(βˆ’sin π‘₯)+cos⁑π‘₯ = cos 𝒙 (βˆ’πŸπ¬π’π§ 𝒙+𝟏) Putting f’(𝒙) = 0 cos π‘₯ (βˆ’2 sin⁑〖π‘₯+1γ€— )=0 π‘₯ = πœ‹/6 , 5πœ‹/6 & πœ‹/2 are Critical points. cos 𝒙 = 0 cos π‘₯ = 0 cos π‘₯ = cos πœ‹/2 𝒙 = 𝝅/𝟐 – 2 sin 𝒙 + 1 = 0 – 2 sin π‘₯ = –1 sin π‘₯ = (βˆ’1)/(βˆ’2) sin π‘₯ = 1/2 sin π‘₯ = sin πœ‹/6 𝒙 = 𝝅/πŸ” Also, 𝒙 = πœ‹ βˆ’πœ‹/6=πŸ“π…/πŸ” Since our interval is 𝒙 ∈ [0, πœ‹] Critical points are π‘₯=𝟎, πœ‹/6 , πœ‹/2 ,5πœ‹/6,𝝅 Hence Absolute maximum value = πŸ“/πŸ’ & Absolute minimum value = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo