Misc 3 - Find intervals in which f(x) = 4 sin x - 2x - x cos x - Miscellaneous

part 2 - Misc 3 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Misc 3 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Misc 3 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 5 - Misc 3 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 6 - Misc 3 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 7 - Misc 3 - Miscellaneous - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Misc 3 Find the intervals in which the function f given by f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯π‘π‘œπ‘  π‘₯γ€—)/(2 + cos⁑π‘₯ ) is (i) increasing (ii) decreasing.f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯π‘π‘œπ‘  π‘₯γ€—)/(2 + cos⁑π‘₯ ) Let’s consider the interval [𝟎 , πŸπ…] Finding f’(𝒙) f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯ π‘π‘œπ‘  π‘₯γ€—)/(2 + cos⁑π‘₯ ) f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ π‘₯(2 + cos⁑π‘₯ )γ€—)/(2 + cos⁑π‘₯ ) f(π‘₯) = (4 sin⁑π‘₯)/(2 + π‘π‘œπ‘ ) – π‘₯(2 + cos⁑π‘₯ )/(2 + cos⁑π‘₯ ) f(𝒙) = (πŸ’ π’”π’Šπ’β‘π’™)/(𝟐 + 𝒄𝒐𝒔⁑𝒙 )βˆ’π’™ Differentiating w.r.t π‘₯ f’(π‘₯) = 𝑑/𝑑π‘₯ ((4 sin⁑π‘₯)/(2 + π‘π‘œπ‘  π‘₯) βˆ’ π‘₯) = 𝑑/𝑑π‘₯ ((4 sin⁑π‘₯)/(2 + cos⁑π‘₯ )) – 𝑑(π‘₯)/𝑑π‘₯ = 𝑑/𝑑π‘₯ ((4 sin⁑π‘₯)/(2 + cos⁑π‘₯ )) – 1 = [((4 sin⁑π‘₯ )^β€² (2 + cos⁑π‘₯ )βˆ’(2 + cos⁑π‘₯ )^β€² (4 sin⁑π‘₯ ))/(2+cos⁑π‘₯ )^2 ] βˆ’1 = [(4 cos⁑π‘₯ (2 + cos⁑π‘₯ ) βˆ’ (βˆ’sin⁑π‘₯ )(4 sin⁑π‘₯ ))/(2 + cos⁑π‘₯ )^2 ] βˆ’1 = [(8 cos⁑π‘₯ + 4 cos^2⁑π‘₯ + 4 sin^2⁑π‘₯)/(2 + cos⁑π‘₯ )^2 ] βˆ’1 = (8 cos⁑π‘₯ + 4(〖𝒄𝒐𝒔〗^πŸβ‘π’™ +γ€– γ€–π’”π’Šπ’γ€—^πŸγ€—β‘π’™ ))/(2 + cos⁑π‘₯ )^2 βˆ’1 = (8 cos⁑π‘₯ + 4(𝟏))/(2 + cos⁑π‘₯ )^2 βˆ’1 = (8 cos⁑π‘₯ + 4 βˆ’(2 + cos⁑π‘₯ )^2)/(2+ cos⁑π‘₯ )^2 = (8 cos⁑〖π‘₯ + 4 βˆ’ (4 + cos^2⁑〖π‘₯ + 4 cos⁑π‘₯ γ€— )γ€—)/((2 + γ€–cos⁑π‘₯γ€—^2 ) ) = (8 π‘π‘œπ‘  π‘₯ βˆ’ cos^2⁑π‘₯ βˆ’ 4 cos⁑π‘₯ )/(2 +γ€– cos〗⁑π‘₯ )^2 = (4 cos⁑〖π‘₯ βˆ’γ€– cosγ€—^2⁑π‘₯ γ€—)/(2 + cos⁑π‘₯ )^2 ∴ f’(𝒙) = 𝒄𝒐𝒔⁑〖𝒙 (πŸ’ βˆ’ 𝒄𝒐𝒔⁑𝒙 )γ€—/(𝟐 + 𝒄𝒐𝒔⁑𝒙 )^𝟐 Putting f’(𝒙) = 0 cos⁑π‘₯(4 βˆ’ cos⁑π‘₯ )/(2 + π‘π‘œπ‘ β‘π‘₯ )^2 = 0 Thus, Numerator is 0 cos 𝒙 (πŸ’βˆ’π’„π’π’”β‘π’™ ) = 0 Thus, cos 𝒙 = 0 Since 0 ≀ π‘₯ ≀ 2πœ‹ So, values of 𝒙 are 𝝅/𝟐 & πŸ‘π…/𝟐 4 – cos π‘₯ = 0 cos π‘₯ = 4 But βˆ’1" ≀" cos⁑π‘₯ ≀ 1 So cos π‘₯ = 4 is not possible Plotting value of 𝒙 on number line So, f(π‘₯) is strictly increasing on (0 , πœ‹/2) & (3πœ‹/2 , 2πœ‹) f(π‘₯) is strictly decreasing on (πœ‹/2 ,3πœ‹/2) But we need to find Increasing & Decreasing f’(π‘₯) = π‘π‘œπ‘ β‘γ€–π‘₯ (4 βˆ’ π‘π‘œπ‘ β‘π‘₯ )γ€—/(2 + π‘π‘œπ‘ β‘π‘₯ )^2 Thus, f(π‘₯) is increasing on [𝟎 , 𝝅/𝟐] & [πŸ‘π…/𝟐 , πŸπ…] f(π‘₯) is decreasing on [𝝅/𝟐 ,πŸ‘π…/𝟐] For x = 0 f’(0) = 1/3 For x = πœ‹/2 f’(πœ‹/2) = 0 For x = 3πœ‹/2 f’(3πœ‹/2) = 0 For x = 2πœ‹ f’(2πœ‹) = 1/3

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo