Last updated at Dec. 24, 2019 by Teachoo

Transcript

Ex 2.2, 10 Write the function in the simplest form: tan-1 ((3a2x −x3)/(a3 −3ax2)), α > 0; (−a)/√3 ≤ x ≤ a/√3 tan-1 ((3a2x − x3)/(a3 − 3ax2)) Putting x = a tan θ = tan-1 ((3a^2 (a tan θ) − (a tan θ)^3)/(a^3 − 3a (a tan θ)^2 )) = tan-1 ((3a^3 tan θ − a^3 tan^3 θ)/(a^3 − 3 a.a^2 tan^2 θ)) = tan-1 ((a^3 (3 tan θ − tan^3 θ))/(a^3 (1 − 3 tan^2 θ))) = tan-1 ((3 tan θ − tan^3 θ)/(1 − 3tan^2 θ)) = tan-1 (tan 3θ) = 3θ We know x = a tan θ 𝑥/𝑎 = tan θ tan θ = 𝑥/𝑎 θ = tan-1 (𝑥/𝑎) Hence, tan-1 ((3a2x − x3)/(a3 − 3ax2)) = 3θ tan-1 ((3a2x − x3)/(a3 − 3ax2)) = 3 tan -1 𝑥/𝑎 Hence proved

Ex 2.2

Ex 2.2,1

Ex 2.2, 2 Important

Ex 2.2, 3 Important

Ex 2.2, 4 Important

Ex 2.2, 5 Important

Ex 2.2, 6 Important

Ex 2.2, 7 Important

Ex 2.2, 8 Important

Ex 2.2, 9

Ex 2.2, 10 Important You are here

Ex 2.2, 11

Ex 2.2, 12 Important

Ex 2.2, 13 Important

Ex 2.2, 14 Important

Ex 2.2, 15 Important

Ex 2.2, 16

Ex 2.2, 17

Ex 2.2, 18 Important

Ex 2.2, 19 Important

Ex 2.2, 20 Important

Ex 2.2, 21 Important

Chapter 2 Class 12 Inverse Trigonometric Functions

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.