Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Feb. 13, 2020 by Teachoo

Transcript

Ex 2.2, 5 Write the function in the simplest form: tan−1 (√(1 + x^2 ) − 1)/x , x ≠ 0 tan−1 (√(1 + x^2 ) − 1)/x Putting x = tan 𝜃 = tan−1 ((√(1 + tan^2 θ )− 1)/(tan θ)) = tan−1 ((√(sec^2 θ ) − 1)/(tan θ)) = tan−1((secθ − 1)/(tan θ)) We write (√(1 + x^2 ) − 1)/x in form of tan Whenever there is √(1+ 𝑥^2 ) we put x = tan θ (sec2 θ = 1 + tan2 θ) = tan−1 ((1/cos𝜃 − 1)/(sin𝜃/cos𝜃 )) = tan−1 (((1 − cosθ)/cosθ )/(sin𝜃/cos𝜃 )) = tan−1 ((1 −〖 cos〗𝜃)/sin𝜃 ) Using sin 2θ = 2 sin θ cos θ Replacing θ with 𝜃/2 sin 2θ/2 = 2 sin θ/2 cos θ/2 sin θ = 2 sin θ/2 cos θ/2 Also, cos 2θ = 1 – 2 sin2 θ Replacing θ with 𝜃/2 cos 2(𝜃/2) = 1 − 2 sin2 𝜃/2 cos θ = 1 − 2 sin2 𝜃/2 2 sin2 𝜃/2 = 1 – cos θ 1 – cos θ = 2 sin2 𝜃/2 So, our equation becomes = tan−1 ((2 𝑠𝑖𝑛2 𝜃/2)/(2 〖sin 〗〖𝜃/2〗 cos〖 𝜃/2〗 )) = tan−1 (〖sin 〗〖𝜃/2〗/cos〖 𝜃/2〗 ) = tan−1 (𝑡𝑎𝑛 𝜃/2) = θ/2 We assumed that x = tan θ θ = tan-1x Hence, tan−1 (√(1 + x^2 ) − 1)/x = θ/2 = 𝟏/𝟐 tan-1x

Ex 2.2

Ex 2.2,1

Ex 2.2, 2 Important

Ex 2.2, 3 Important

Ex 2.2, 4 Important

Ex 2.2, 5 Important You are here

Ex 2.2, 6 Important

Ex 2.2, 7 Important

Ex 2.2, 8 Important

Ex 2.2, 9

Ex 2.2, 10 Important

Ex 2.2, 11

Ex 2.2, 12 Important

Ex 2.2, 13 Important

Ex 2.2, 14 Important

Ex 2.2, 15 Important

Ex 2.2, 16

Ex 2.2, 17

Ex 2.2, 18 Important

Ex 2.2, 19 Important

Ex 2.2, 20 Important

Ex 2.2, 21 Important

Chapter 2 Class 12 Inverse Trigonometric Functions

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.