

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 2.2
Ex 2.2, 2 Important
Ex 2.2, 3
Ex 2.2, 4 Important
Ex 2.2, 5 Important
Ex 2.2, 6
Ex 2.2, 7 Important You are here
Ex 2.2, 8 Important
Ex 2.2, 9
Ex 2.2, 10 Important
Ex 2.2, 11
Ex 2.2, 12 Important
Ex 2.2, 13 Important
Ex 2.2, 14 Important
Ex 2.2, 15 Important
Ex 2.2, 16
Ex 2.2, 17
Ex 2.2, 18 Important
Ex 2.2, 19 (MCQ) Important
Ex 2.2, 20 (MCQ) Important
Ex 2.2, 21 (MCQ)
Last updated at May 12, 2021 by Teachoo
Ex 2.2, 7 Write the function in the simplest form: tan−1 (√((1 −〖 cos〗x)/(1 +〖 cos〗x ))), x < π Lets first calculate values of 1 – cos x & 1 + cos x We know that cos 2x = 1 – 2sin2x Replacing x by 𝑥/2 cos (2𝑥/2) = 1 – 2 sin2 𝑥/2 cos (x) = 1 – 2 sin2 𝑥/2 2 sin2 𝑥/2 = 1 – cos x 1 – cos x = 2 sin2 𝑥/2 We know that cos 2x = 2 cos2x – 1 Replacing x by 𝑥/2 cos (2𝑥/2) = 2 cos2 𝑥/2 – 1 cos x = 2 cos2 𝑥/2 – 1 1 + cos x = 2 cos2 𝑥/2 Now, tan-1 (√((1 −〖 cos〗x)/(1 +〖 cos〗x ))) = tan−1 (√((𝟐 𝐬𝐢𝐧𝟐 𝐱/𝟐 )/(𝟐 𝐜𝐨𝐬𝟐 𝐱/𝟐))) = tan−1 (√((sin2 x/2 )/(cos2 x/2))) = tan−1 (√(tan2〖 𝑥/2〗 )) = tan−1 (tan〖 𝑥/2〗 ) = 𝒙/𝟐