



Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 1 (b)
Example 1 (c) Important
Example 1 (d)
Example 2 Important
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7
Example 8
Example 9 (i)
Example 9 (ii) Important
Example 10
Example 11 Deleted for CBSE Board 2023 Exams
Example 12
Example 13 Important
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important
Example 16
Example 17
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Example 23 You are here
Example 24 Important
Example 25 Important
Last updated at March 22, 2023 by Teachoo
Example 23 Show that the area of the triangle formed by the lines y = m1 x + c1 , y = m2x + c2 and x = 0 is (𝑐_2 − 𝑐_1 )^2/2|𝑚_1 − 𝑚_2 | . There are three lines given in the graph x = 0 This line will lie be y-axis y = m1 x + c1 Putting x = 0 y = 0 + c1 = c1 Hence point is P(0, c1) y = m2 x + c2 Putting x = 0 y = 0 + c2 = c2 Hence point is Q(0, c2) Assuming both lines meet at R We need to find area Δ PQR To find area Δ PQR, we find coordinates of vertices Here P(0, c1), Q(0,c2) We find coordinates of point R Vertex R is the point of intersection of lines y = m1 x + c1 …(1) y = m2 x + c2 …(2) Subtracting (1) from (2) y – y = m1 x + c1 – (m2x + c2) 0 = m1 x + c1 – m2x – c2 0 = x(m1 – m2) + c1 – c2 –x(m1 – m2) = c1 – c2 x(m1 – m2) = –(c1 – c2) x(m1 – m2) = c2 – c1 x = (𝑐_2 − 𝑐_1)/(𝑚_1 − 〖 𝑚〗_2 ) Putting value of x in (1) y = m1x + c1 y = m1 ((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 )) + c1 y = (𝑚_1 (𝑐_2 − 𝑐_1 ) + 〖 𝑐〗_1 (𝑚_1 − 𝑚_2))/(𝑚_1 − 𝑚_2 ) y = (𝑚_1 𝑐_2 − 𝑚_1 𝑐_1 + 〖 𝑐〗_1 𝑚_1 − 〖 𝑐〗_1 𝑚_2)/(𝑚_1 − 𝑚_2 ) y = (𝑚_1 𝑐_(2 ) − 〖 𝑐〗_1 𝑚_2)/(𝑚_1 − 𝑚_2 ) ∴ Vertex R is ((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) ", " (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 )) The vertices of ∆ PRQ is P(0, c1), R((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) ", " (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 )) & Q(0, c2) We know that Area of triangle whose vertices are (x1, y1) (x2, y2) (x3, y3) is 1/2 |"x1" ("y2 – y3" ) + 𝑥2 (𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2)| For ∆ PRQ, (x1, y1) = P(0, c1) (x2,y2) = R ((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) ", " (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 )) (x3,y3) = Q (0, c2) Area ∆ PRQ = ■8(1/2 " " |0((𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 ) −𝑐2) + (𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) (𝑐2 −𝑐1) + 0(𝑐1 − (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 ))| ) = ■8(1/2 " " |█(0 + (𝑐2 − 𝑐1)2/(𝑚1 − 𝑚2) + 0)| ) = ■8(1/2 " " |(〖(𝑐〗_2 − 𝑐_1)2)/(𝑚_1 − 𝑚_2 )| ) = 1/2 (𝑐2 − 𝑐1)2/|𝑚1 − 𝑚2| ∴ Area required = 1/2 (𝑐2 − 𝑐1)2/|𝑚1 − 𝑚2| Hence proved