



Examples
Example 1 (b)
Example 1 (c) Important
Example 1 (d)
Example 2 Important
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7
Example 8
Example 9 (i)
Example 9 (ii) Important
Example 10
Example 11
Example 12
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Example 23 You are here
Example 24 Important
Example 25 Important
Examples
Last updated at Dec. 8, 2016 by Teachoo
Example 23 Show that the area of the triangle formed by the lines y = m1 x + c1 , y = m2x + c2 and x = 0 is (π_2 β π_1 )^2/2|π_1 β π_2 | . There are three lines given in the graph x = 0 This line will lie be y-axis y = m1 x + c1 Putting x = 0 y = 0 + c1 = c1 Hence point is P(0, c1) y = m2 x + c2 Putting x = 0 y = 0 + c2 = c2 Hence point is Q(0, c2) Assuming both lines meet at R We need to find area Ξ PQR To find area Ξ PQR, we find coordinates of vertices Here P(0, c1), Q(0,c2) We find coordinates of point R Vertex R is the point of intersection of lines y = m1 x + c1 β¦(1) y = m2 x + c2 β¦(2) Subtracting (1) from (2) y β y = m1 x + c1 β (m2x + c2) 0 = m1 x + c1 β m2x β c2 0 = x(m1 β m2) + c1 β c2 βx(m1 β m2) = c1 β c2 x(m1 β m2) = β(c1 β c2) x(m1 β m2) = c2 β c1 x = (π_2 β π_1)/(π_1 β γ πγ_2 ) Putting value of x in (1) y = m1x + c1 y = m1 ((π_2 β π_1)/(π_1 β π_2 )) + c1 y = (π_1 (π_2 β π_1 ) + γ πγ_1 (π_1 β π_2))/(π_1 β π_2 ) y = (π_1 π_2 β π_1 π_1 + γ πγ_1 π_1 β γ πγ_1 π_2)/(π_1 β π_2 ) y = (π_1 π_(2 ) β γ πγ_1 π_2)/(π_1 β π_2 ) β΄ Vertex R is ((π_2 β π_1)/(π_1 β π_2 ) ", " (π_1 π_(2 ) β π_2 γ πγ_1)/(π_1 β π_2 )) The vertices of β PRQ is P(0, c1), R((π_2 β π_1)/(π_1 β π_2 ) ", " (π_1 π_(2 ) β π_2 γ πγ_1)/(π_1 β π_2 )) & Q(0, c2) We know that Area of triangle whose vertices are (x1, y1) (x2, y2) (x3, y3) is 1/2 |"x1" ("y2 β y3" ) + π₯2 (π¦3 β π¦1) + π₯3(π¦1 β π¦2)| For β PRQ, (x1, y1) = P(0, c1) (x2,y2) = R ((π_2 β π_1)/(π_1 β π_2 ) ", " (π_1 π_(2 ) β π_2 γ πγ_1)/(π_1 β π_2 )) (x3,y3) = Q (0, c2) Area β PRQ = β 8(1/2 " " |0((π_1 π_(2 ) β π_2 γ πγ_1)/(π_1 β π_2 ) βπ2) + (π_2 β π_1)/(π_1 β π_2 ) (π2 βπ1) + 0(π1 β (π_1 π_(2 ) β π_2 γ πγ_1)/(π_1 β π_2 ))| ) = β 8(1/2 " " |β(0 + (π2 β π1)2/(π1 β π2) + 0)| ) = β 8(1/2 " " |(γ(πγ_2 β π_1)2)/(π_1 β π_2 )| ) = 1/2 (π2 β π1)2/|π1 β π2| β΄ Area required = 1/2 (π2 β π1)2/|π1 β π2| Hence proved