Check sibling questions

Example 5 - Time and distance graph of a linear motion - Examples

Example 5 - Chapter 10 Class 11 Straight Lines - Part 2
Example 5 - Chapter 10 Class 11 Straight Lines - Part 3


Transcript

Example 5 In Fig 10.9, time and distance graph of a linear motion is given. Two positions of time and distance are recorded as, when T = 0, D = 2 and when T = 3, D = 8. Using the concept of slope, find law of motion, i.e., how distance depends upon time. Let A = (0, 2) , B = (3, 8) , C = (T, D) Points A,B, C lie on the line So, A, B & C are collinear Slope of AB = Slope of BC We know that slope of a line through the points (x1, y1)(x2, y2)is m = ( 2 1)/( 2 1) D 8 = 2T 6 D = 2T 6 + 8 D = 2T + 2 D = 2(T + 1) Here, we can see that as T increases , D increases Hence, Distance depends on time.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.