

Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 1 (b)
Example 1 (c) Important
Example 1 (d)
Example 2 Important
Example 3 Important You are here
Example 4
Example 5
Example 6 Important
Example 7
Example 8
Example 9 (i)
Example 9 (ii) Important
Example 10
Example 11 Deleted for CBSE Board 2023 Exams
Example 12
Example 13 Important
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important
Example 16
Example 17
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Example 23
Example 24 Important
Example 25 Important
Last updated at March 30, 2023 by Teachoo
Example 3 Line through the points (–2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x. Let points be A(–2, 6), B(4, 8) , C(8, 12) and D(x, 24) If two lines are perpendicular , then product of their slope is –1 So, Slope of AB × Slope of CD = –1 We know that slope of a line through the points (x1, y1) , (x2, y2)is m = (𝑦_2 − 𝑦_1)/(𝑥_2 − 𝑥_1 ) Slope of line AB passing through A(– 2, 6) & B(4, 8) Here x1 = −2, y1 = 6 x2 = 4, y2 = 8 Putting avalues Slope of AB = (8 − 6)/(4 − (−2)) = 2/(4 − (−2)) = 2/6 = 1/3 Slope of line CD passing through C(8, 12) & D(x, 24) Here x1 = 8, y1 = 12 x2 = x, y2 = 24 Putting values Slope of CD = (24 − 12)/(𝑥 − 8) = 12/(𝑥 − 8) From (1) Slope of AB × Slope of CD = –1 1/3 × (12/(𝑥 − 8)) = –1 4/((𝑥 − 8)) = –1 4 = –1(x – 8) 4 = –x + 8 x = 8 – 4 x = 4 Thus, value of x is 4