Last updated at Feb. 3, 2020 by Teachoo
Transcript
Example 21 Find the distance of the line 4x – y = 0 from the point P (4, 1) measured along the line making an angle of 135° with the positive x-axis. There are two lines Line AB 4x – y = 0 Line CD making an angle 135° with positive x-axis Both lines meet at Q Point P(4, 1) is on line CD We need to find distance PQ. In PQ, P is (4,1) We need to find point Q Point Q is intersection of line AB & CD Equation of AB is 4x – y = 0 Finding equation of line CD Slope of line CD = tan 135° = tan (180° − 45°) = − tan 45° = − 1 Also, Point P(4, 1) lies on the line CD (4,1) & having slope –1 is In PQ, P is (4,1) We need to find point Q Point Q is intersection of line AB & CD Equation of AB is 4x – y = 0 Finding equation of line CD Slope of line CD = tan 135° = tan (180° − 45°) = − tan 45° = − 1 Also, Point P(4, 1) lies on the line CD (4,1) & having slope –1 is Equation of a line passing through a point (x1, y1)& having slope m is (y − y1) = m(x − x1) Equation of line CD passes through point P(4,1) & having slope –1 is (y − 1) = −1(x − 4) y − 1 = − x + 4 y + x = 4 + 1 x + y = 5 ∴ Equation of line CD is x + y = 5 Finding point Q Equation of AB : 4x − y = 0 Equation of CD : x + y = 5 Adding (1) & (2) 4x – y + x + y = 0 + 5 4x + x − y + y = 5 5x + 0 = 5 5x = 5 x = 5/5 = 1 Putting x = 1 in (1) 4x − y = 0 4(1) − y = 0 4 − y = 0 4 = y y = 4 Hence point Q (1, 4) Now we need to find distance between Q (1, 4) & P(4, 1) PQ = √((𝑥_2 − 𝑥_1 )^2+(𝑦_2 − 𝑦_1 )^2 ) = √((4−1)^2+(1−4)^2 ) = √(( 3)^2+(−3)^2 ) = √(9+9) = √18 = √(9×2) = √(3^2 × 2) = = √(3^2 ) × √2 = 3√𝟐 units Hence the required distance is 3√2 units
Examples
Example 2
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7
Example 8
Example 9 Important
Example 10
Example 11
Example 12
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17
Example 18
Example 19
Example 20
Example 21 Important You are here
Example 22 Important
Example 23
Example 24 Important
Example 25 Important
Examples
About the Author