


Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 1 (b)
Example 1 (c) Important
Example 1 (d)
Example 2 Important
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7
Example 8
Example 9 (i)
Example 9 (ii) Important
Example 10
Example 11 Deleted for CBSE Board 2023 Exams
Example 12
Example 13 Important
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important
Example 16 You are here
Example 17
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Example 23
Example 24 Important
Example 25 Important
Last updated at March 22, 2023 by Teachoo
Example 16 Show that two lines a1x + b1y + c1 = 0 and a2 x + b2 y + c2 = 0 , where b1, b2 ≠ 0 are: (i) Parallel if 𝑎_1/𝑏_1 = 𝑎2/𝑏2 The given lines are a1x + b1y + c1 = 0 & a2 x + b2 y + c2 = 0 Let slope of line (1) be m1 & slope of line (2) be m2 If two lines are parallel, then their slopes are equal If line (1) & (2) are parallel , then m1 = m2 Finding m1 & m2 From (1) a1x + b1y + c1 = 0 b1y = −c1 − a1 x b1y = −a1 x −c1 y = ( −𝑎_1 𝑥 − 𝑐_1)/𝑏_1 y = ((−𝑎_1)/𝑏_1 ) x –(𝑐_1/𝑏_1 ) The above equation is of the form y = mx + c where m is the slope Thus, Slope of line (1) = m1 = (−𝑎_1)/𝑏_1 From (2) a2x + b2y + c2 = 0 b2y = −c2 − a2 x b2y = −a2 x −c2 y = ( −𝑎_2 𝑥 − 𝑐_2)/𝑏_2 y = ((−𝑎_2)/𝑏_2 )x + (𝑐_2/𝑏_2 ) The above equation is of the form y = mx + c where m is the slope Thus, Slope of line (2) = m2 = (−𝑎_2)/𝑏_2 Since line (1) & (2) are parallel. So, m1 = m2 (−𝑎_1)/𝑏_1 = (−𝑎_2)/𝑏_2 ( 𝒂_𝟏)/𝒃_𝟏 = 𝒂_𝟐/𝒃_𝟐 Hence proved Example 16 Show that two lines a1x + b1y + c1 = 0 and a2 x + b2 y + c2 = 0 , where b1, b2 ≠ 0 are: (ii) Perpendicular if a1a2 + b1b2 = 0 . If two lines are perpendicular, then product of their slope is equal to −1 Since line (1) & (2) are perpendicular ⇒ (Slope of line 1) × (Slope of line 2) = −1 m1 × m2 = − 1 ( −𝑎_1)/𝑏_1 × ( −𝑎_2)/𝑏_2 = −1 ( 𝑎_1)/𝑏_1 × 𝑎_2/𝑏_2 = −1 a1a2 = −b1b2 a1a2 + b1b2 = 0 Hence proved