Last updated at Feb. 3, 2020 by Teachoo

Transcript

Example 16 Show that two lines a1x + b1y + c1 = 0 and a2 x + b2 y + c2 = 0 , where b1, b2 โ 0 are: (i) Parallel if ๐_1/๐_1 = ๐2/๐2 The given lines are a1x + b1y + c1 = 0 & a2 x + b2 y + c2 = 0 Let slope of line (1) be m1 & slope of line (2) be m2 If two lines are parallel, then their slopes are equal If line (1) & (2) are parallel , then m1 = m2 Finding m1 & m2 From (1) a1x + b1y + c1 = 0 b1y = โc1 โ a1 x b1y = โa1 x โc1 y = ( โ๐_1 ๐ฅ โ ๐_1)/๐_1 y = ((โ๐_1)/๐_1 ) x โ(๐_1/๐_1 ) The above equation is of the form y = mx + c where m is the slope Thus, Slope of line (1) = m1 = (โ๐_1)/๐_1 From (2) a2x + b2y + c2 = 0 b2y = โc2 โ a2 x b2y = โa2 x โc2 y = ( โ๐_2 ๐ฅ โ ๐_2)/๐_2 y = ((โ๐_2)/๐_2 )x + (๐_2/๐_2 ) The above equation is of the form y = mx + c where m is the slope Thus, Slope of line (2) = m2 = (โ๐_2)/๐_2 Since line (1) & (2) are parallel. So, m1 = m2 (โ๐_1)/๐_1 = (โ๐_2)/๐_2 ( ๐_๐)/๐_๐ = ๐_๐/๐_๐ Hence proved Example 16 Show that two lines a1x + b1y + c1 = 0 and a2 x + b2 y + c2 = 0 , where b1, b2 โ 0 are: (ii) Perpendicular if a1a2 + b1b2 = 0 . If two lines are perpendicular, then product of their slope is equal to โ1 Since line (1) & (2) are perpendicular โ (Slope of line 1) ร (Slope of line 2) = โ1 m1 ร m2 = โ 1 ( โ๐_1)/๐_1 ร ( โ๐_2)/๐_2 = โ1 ( ๐_1)/๐_1 ร ๐_2/๐_2 = โ1 a1a2 = โb1b2 a1a2 + b1b2 = 0 Hence proved

Examples

Example 1
Important

Example 2

Example 3 Important

Example 4

Example 5

Example 6 Important

Example 7

Example 8

Example 9 Important

Example 10

Example 11

Example 12

Example 13 Important

Example 14 Important

Example 15 Important

Example 16 You are here

Example 17

Example 18

Example 19

Example 20

Example 21 Important

Example 22 Important

Example 23

Example 24 Important

Example 25 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.