Example 14 - Show that area of triangle formed by y = m1x + c1 - Examples

part 2 - Example 14 - Examples - Serial order wise - Chapter 9 Class 11 Straight Lines
part 3 - Example 14 - Examples - Serial order wise - Chapter 9 Class 11 Straight Lines
part 4 - Example 14 - Examples - Serial order wise - Chapter 9 Class 11 Straight Lines
part 5 - Example 14 - Examples - Serial order wise - Chapter 9 Class 11 Straight Lines

Share on WhatsApp

Transcript

Example 14 Show that the area of the triangle formed by the lines y = m1 x + c1 , y = m2x + c2 and x = 0 is (𝑐_2 − 𝑐_1 )^2/2|𝑚_1 − 𝑚_2 | . There are three lines given in the graph x = 0 This line will lie be y-axis y = m1 x + c1 Putting x = 0 y = 0 + c1 = c1 Hence point is P(0, c1) y = m2 x + c2 Putting x = 0 y = 0 + c2 = c2 Hence point is Q(0, c2) Assuming both lines meet at R We need to find area Δ PQR To find area Δ PQR, we find coordinates of vertices Here P(0, c1), Q(0,c2) We find coordinates of point R Vertex R is the point of intersection of lines y = m1 x + c1 …(1) y = m2 x + c2 …(2) Subtracting (1) from (2) y – y = m1 x + c1 – (m2x + c2) 0 = m1 x + c1 – m2x – c2 0 = x(m1 – m2) + c1 – c2 –x(m1 – m2) = c1 – c2 x(m1 – m2) = –(c1 – c2) x(m1 – m2) = c2 – c1 x = (𝑐_2 − 𝑐_1)/(𝑚_1 − 〖 𝑚〗_2 ) Putting value of x in (1) y = m1x + c1 y = m1 ((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 )) + c1 y = (𝑚_1 (𝑐_2 − 𝑐_1 ) + 〖 𝑐〗_1 (𝑚_1 − 𝑚_2))/(𝑚_1 − 𝑚_2 ) y = (𝑚_1 𝑐_2 − 𝑚_1 𝑐_1 + 〖 𝑐〗_1 𝑚_1 − 〖 𝑐〗_1 𝑚_2)/(𝑚_1 − 𝑚_2 ) y = (𝑚_1 𝑐_(2 ) − 〖 𝑐〗_1 𝑚_2)/(𝑚_1 − 𝑚_2 ) ∴ Vertex R is ((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) ", " (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 )) The vertices of ∆ PRQ is P(0, c1), R((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) ", " (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 )) & Q(0, c2) We know that Area of triangle whose vertices are (x1, y1) (x2, y2) (x3, y3) is 1/2 |"x1" ("y2 – y3" ) + 𝑥2 (𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2)| For ∆ PRQ, (x1, y1) = P(0, c1) (x2,y2) = R ((𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) ", " (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 )) (x3,y3) = Q (0, c2) Area ∆ PRQ = ■8(1/2 " " |0((𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 ) −𝑐2) + (𝑐_2 − 𝑐_1)/(𝑚_1 − 𝑚_2 ) (𝑐2 −𝑐1) + 0(𝑐1 − (𝑚_1 𝑐_(2 ) − 𝑚_2 〖 𝑐〗_1)/(𝑚_1 − 𝑚_2 ))| ) = ■8(1/2 " " |█(0 + (𝑐2 − 𝑐1)2/(𝑚1 − 𝑚2) + 0)| ) = ■8(1/2 " " |(〖(𝑐〗_2 − 𝑐_1)2)/(𝑚_1 − 𝑚_2 )| ) = 1/2 (𝑐2 − 𝑐1)2/|𝑚1 − 𝑚2| ∴ Area required = 1/2 (𝑐2 − 𝑐1)2/|𝑚1 − 𝑚2| Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo