This question is similar to Chapter 5 Class 12 Continuity and Differentiability - Ex 5.6

Please check the question here

https://www.teachoo.com/3690/702/Ex-5.6--6---Find-dy-dx--x--a-(theta---sin)--y--a-(1---cos)/category/Ex-5.6/

Β 

[SQP] If π‘₯=π‘Ž(πœƒβˆ’sin πœƒ), 𝑦=π‘Ž(1βˆ’cos πœƒ) find (𝑑^2 𝑦)/(𝑑π‘₯^2) - CBSE Class 1 - CBSE Class 12 Sample Paper for 2026 Boards

part 2 - Question 26 (B) - CBSE Class 12 Sample Paper for 2026 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 26 (B) - CBSE Class 12 Sample Paper for 2026 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12 part 4 - Question 26 (B) - CBSE Class 12 Sample Paper for 2026 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12 part 5 - Question 26 (B) - CBSE Class 12 Sample Paper for 2026 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

Remove Ads

Transcript

Question 26 (B) If π‘₯=π‘Ž(πœƒβˆ’sin πœƒ), 𝑦=π‘Ž(1βˆ’cos πœƒ) find (𝑑^2 𝑦)/(𝑑π‘₯^2 ).Here 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/π‘‘πœƒ)/(𝑑π‘₯/π‘‘πœƒ) Finding π’…π’š/π’…πœ½ and 𝒅𝒙/π’…πœ½ separately Calculating π’…π’š/π’…πœ½ 𝑦 = π‘Ž (1+cosβ‘πœƒ) 𝑑𝑦/π‘‘πœƒ = 𝑑(π‘Ž (1 βˆ’ cosβ‘πœƒ))/π‘‘πœƒ 𝑑𝑦/π‘‘πœƒ = π‘Ž (𝑑(1 βˆ’ cosβ‘πœƒ )/π‘‘πœƒ) 𝑑𝑦/π‘‘πœƒ = π‘Ž (0βˆ’(βˆ’sinβ‘πœƒ )) 𝑑𝑦/π‘‘πœƒ = π‘Ž (sinβ‘πœƒ ) π’…π’š/π’…πœ½ = 𝒂 π’”π’Šπ’β‘πœ½ Calculating 𝒅𝒙/π’…πœ½ π‘₯=π‘Ž (πœƒ –sinβ‘πœƒ ) 𝑑π‘₯/π‘‘πœƒ = 𝑑(π‘Ž πœƒ βˆ’π‘Ž sinβ‘πœƒ )/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ = 𝑑(π‘Ž πœƒ)/π‘‘πœƒ βˆ’ 𝑑(π‘Ž sinβ‘πœƒ )/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ = π‘Žβˆ’γ€–π‘Ž cosγ€—β‘πœƒ 𝒅𝒙/π’…πœ½ = 𝒂(γ€–πŸβˆ’π’„π’π’”γ€—β‘πœ½ ) Therefore, 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/π‘‘πœƒ)/(𝑑π‘₯/π‘‘πœƒ) 𝑑𝑦/𝑑π‘₯ = (π‘Ž sinβ‘πœƒ)/π‘Ž(γ€–1 βˆ’ cosγ€—β‘πœƒ ) 𝑑𝑦/𝑑π‘₯ = sinβ‘πœƒ/γ€–1 βˆ’ cosγ€—β‘πœƒ 𝑑𝑦/𝑑π‘₯ = (2 γ€–sin γ€—β‘γ€–πœƒ/2γ€— γ€–cos γ€—β‘γ€–πœƒ/2γ€—)/(2 γ€–sin^2 γ€—β‘γ€–πœƒ/2γ€— ) 𝑑𝑦/𝑑π‘₯ = γ€–cos γ€—β‘γ€–πœƒ/2γ€—/(sin πœƒ/2) π’…π’š/𝒅𝒙 = π’„π’π’•β‘γ€–πœ½/πŸγ€— Rough We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by πœƒ/2 sin ΞΈ = 2 π’”π’Šπ’β‘γ€–πœ½/πŸγ€— π’„π’π’”β‘γ€–πœ½/πŸγ€— and cos 2ΞΈ = 1 – 2sin2 ΞΈ Replacing ΞΈ by πœƒ/2 cos ΞΈ = 1 – 2sin2 πœƒ/2 1 – cos ΞΈ = 2sin2 𝜽/𝟐 Finding (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) π’…π’š/𝒅𝒙 = π’„π’π’•β‘γ€–πœ½/πŸγ€— Differentiating again (𝑑^2 𝑦)/(𝑑π‘₯^2 )=𝑑(γ€–π‘π‘œπ‘‘ γ€—β‘γ€–πœƒ/2γ€— )/𝑑π‘₯ (𝑑^2 𝑦)/(𝑑π‘₯^2 )=𝑑(γ€–π‘π‘œπ‘‘ γ€—β‘γ€–πœƒ/2γ€— )/π‘‘πœƒ Γ—π‘‘πœƒ/𝑑π‘₯ (𝑑^2 𝑦)/(𝑑π‘₯^2 )=βˆ’γ€–π’„π’π’”π’†π’„γ€—^𝟐 𝜽/𝟐 Γ—πŸ/𝟐 Γ—π‘‘πœƒ/𝑑π‘₯ (𝑑^2 𝑦)/(𝑑π‘₯^2 )=βˆ’1/2 γ€–π‘π‘œπ‘ π‘’π‘γ€—^2 πœƒ/2 Γ—πŸ/(𝒅𝒙/π’…πœ½) (𝑑^2 𝑦)/(𝑑π‘₯^2 )=βˆ’1/2 γ€–π‘π‘œπ‘ π‘’π‘γ€—^2 πœƒ/2 Γ—1/𝒂(𝟏 βˆ’ 𝐜𝐨𝐬⁑𝜽 ) (𝑑^2 𝑦)/(𝑑π‘₯^2 )=βˆ’1/2 γ€–π‘π‘œπ‘ π‘’π‘γ€—^2 πœƒ/2 Γ—1/(𝒂 Γ— 2 sin^2β‘γ€–πœƒ/2γ€— ) (𝑑^2 𝑦)/(𝑑π‘₯^2 )=βˆ’1/4π‘Ž Γ— γ€–π‘π‘œπ‘ π‘’π‘γ€—^2 πœƒ/2 Γ—1/〖𝑠𝑖𝑛〗^2β‘γ€–πœƒ/2γ€— (𝑑^2 𝑦)/(𝑑π‘₯^2 )=βˆ’1/4π‘Ž Γ— γ€–π‘π‘œπ‘ π‘’π‘γ€—^2 πœƒ/2 Γ— γ€–π‘π‘œπ‘ π‘’π‘γ€—^2 πœƒ/2 (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 )=βˆ’πŸ/πŸ’π’‚ Γ— 〖𝒄𝒐𝒔𝒆𝒄〗^πŸ’ 𝜽/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo