Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at May 29, 2018 by Teachoo

Transcript

Ex 9.3, 32 If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation. Introduction If 2,3 are the roots or a quadratic equation, The quadratic equation is x2 β (2 + 3) x + (2 Γ 3) = 0 x2 β 5x + 6 = 0 Therefore, If πΌ & π½ be the root of the quadratic equation So, the quadratic equation becomes x2 β (Sum of roots)x + (product of roots) = 0 i.e. x2 β (πΌ + π½)x + πΌπ½ = 0 Ex9.3, 32 If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation. Let πΌ & π½ be the root of the quadratic equation It is given that AM of roots is 8 AM of πΌ & π½ = 8 (πΌ + π½)/2 = 8 πΌ + π½ = 16 Thus, πΌ + π½ = 16 & πΌπ½ = 25 Now, our quadric equation is x2 β (Sum of roots)x + (Product of roots) = 0 x2 β (πΌ + π½)x + (πΌπ½) = 0 Putting πΌ + π½ = 16 , πΌπ½ = 25 from (1) & (2) x2 β 16x + 25 = 0 Thus, the required quadratic equation is x2 β 16x + 25 = 0

Ex 9.3

Ex 9.3, 1

Ex 9.3, 2

Ex 9.3, 3 Important

Ex 9.3, 4

Ex 9.3, 5

Ex 9.3, 6

Ex 9.3, 7

Ex 9.3, 8

Ex 9.3, 9

Ex 9.3, 10

Ex 9.3, 11 Important

Ex 9.3, 12

Ex 9.3, 13

Ex 9.3, 14

Ex 9.3, 15

Ex 9.3, 16

Ex 9.3, 17 Important

Ex 9.3, 18 Important

Ex 9.3, 19

Ex 9.3, 20

Ex 9.3, 21

Ex 9.3, 22 Important

Ex 9.3, 23

Ex 9.3, 24

Ex 9.3, 25

Ex 9.3, 26

Ex 9.3, 27 Important

Ex 9.3, 28 Important

Ex 9.3, 29 Important

Ex 9.3, 30

Ex 9.3, 31

Ex 9.3, 32 You are here

Chapter 9 Class 11 Sequences and Series

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.