Slide122.JPG Slide123.JPG Slide124.JPG Slide125.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 8.2, 29 If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are A ((A+G)(A G)) Let a & b be two numbers We need to show that the numbers are A ((A+G)(A G)) i.e. a = A + (( + )( )) b = A (( + )( )) Now we know that Arithmetic mean =A = ( a+b)/2 Geometric mean =G= ab Putting value of A and G in RHS we can prove it is equal to a and b Solving A (( + )( )) = A ( 2 2) Putting A = ( + )/2 & G = = (( + )/2) ((( + )/2)^2 ( )2) = (( + )/2) ((( + )2 )/4 ) = (( + )/2) (( 2+ 2+2 4 )/4) = (( + )/2) (( 2 + 2 2 )/4) = ( + )/2 (( )2/4) = ( + )/2 ((( )/2)^2 ) = ( + )/2 ( )/2 Thus, A + (( + )( )) = a & A (( + )( )) = b Hence proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo