Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 8.2

Ex 8.2, 1

Ex 8.2, 2

Ex 8.2, 3 Important

Ex 8.2, 4

Ex 8.2, 5 (a)

Ex 8.2, 5 (b) Important

Ex 8.2, 5 (c)

Ex 8.2, 6

Ex 8.2, 7 Important

Ex 8.2, 8

Ex 8.2, 9 Important

Ex 8.2, 10

Ex 8.2, 11 Important

Ex 8.2, 12

Ex 8.2, 13

Ex 8.2, 14 Important

Ex 8.2, 15

Ex 8.2, 16 Important

Ex 8.2, 17 Important

Ex 8.2, 18 Important You are here

Ex 8.2, 19

Ex 8.2, 20

Ex 8.2, 21

Ex 8.2, 22 Important

Ex 8.2, 23 Important

Ex 8.2, 24

Ex 8.2, 25

Ex 8.2, 26 Important

Ex 8.2, 27 Important

Ex 8.2, 28

Ex 8.2, 29 Important

Ex 8.2, 30 Important

Ex 8.2, 31

Ex 8.2, 32 Important

Chapter 8 Class 11 Sequences and Series

Serial order wise

Last updated at May 29, 2023 by Teachoo

Ex9.3, 18 Find the sum to n terms of the sequence, 8, 88, 888, 8888 8, 88, 888, 8888 to n term This is not a GP but we can relate it to a GP By writing as Sum = 8 + 88 + 888 + 8888 + upto n terms = 8(1) + 8(11) + 8(111) + upto n term Taking 8 common = 8(1 + 11 + 111 + upto n term) Divide & multiply by 9 = 8/9[9(1 + 11 + 111 + upto n term)] = 8/9 [ 9 + 99 + 999 + 9999 + upto n terms] Sum = 8/9 [ 9 + 99 + 999 + 9999 + upto n terms] = 8/9 [ (10 1)+(100 1)+(1000 1)+ upto n terms] = 8/9 [ (10 1)+(102 1)+(103 1)+ upto n terms] = 8/9 [ (10 + 102 + 103 upto n terms) (1 + 1 + 1 + upto n terms)] = 8/9 [(10 + 102 + 103 upto n terms) n 1] We will solve (10 + 102 + 103 upto n terms) separately We can observe that this is GP With first term a = 10 & common ratio r = 102/10 = 10 We know that sum of n terms = (a( ^ 1))/( 1) i.e. Sn =(a( ^ 1))/( 1) putting value of a & r Sn = (10(10n 1))/(10 1) Substituting 10 + 102 + 103 + upto n times = (10(10n 1))/9 in (1) Sum = 8/9 [(10 + 102 + 103 + upto n terms) n] = 8/9 [ (10(10n 1))/(10 1) n ] = 8/9 [ (10(10n 1))/9 n ] = 8/9 [ (10(10n 1) 9n)/9] = 8/9 [ (10(10n 1) 9n)/9] = 8/9 [ 10(10n 1)/9 9/9n] = 8/9 10(10n 1)/9 8/9 9/9n] = 80/81(10n 1) - 8/9n Hence sum of sequence 8 + 88 + 888 + 8888 + .. to n terms = = 80/81(10n 1) 8/9n