Last updated at May 29, 2018 by Teachoo

Transcript

Ex9.3, 22 If the pth ,qth and rth terms of a G.P. are a, b and c, respectively. Prove that aq r br p cp q = 1 We know that nth term of G.P = ARn 1 (We are using a, r in the question, so we use A for first term and R for common ratio) It is given that pth term of G.P = a Ap = a ARp 1 = a a = ARp 1 aq r = ("ARp 1")q r We need to show that aq r br p cp q = 1 Also, qth term of G.P = b Aq = b ARq 1 = b b = ARq 1 br p = (ARq 1)r p & rth term of G.P = c Ar = c ARr 1 = c c = ARr 1 cp q = (ARr 1)p q Now, our equations are aq r = ("ARp 1")q r (1) br p = (ARq 1)r p (2) & cp q = (ARr 1)p q (3) Taking L.H.S. aq r br p cp q Putting values from (1), (2) & (3) = ("ARp 1")q r (ARq 1)r p (ARr 1)p q = "Aq r R(p 1")(q r) "Ar p R(q 1")(r p) "Ap q R(r 1")(p q) = "Aq r Ar p Ap q " "R(p 1")(q r) "R(q 1")(r p) "R(r 1")(p q) = A(q r) + (r p) + (p q) R(p 1) (q - r) + (q 1) ( r - p) + (r 1) ( p-q) = A(q r) + (r p) + (p q) Rp(q r ) 1(q r) + q( r p) 1(r p) +r(p q) 1( p q) = A(q q) + (r r) + (p p) Rpq pr q + r + qr qp r + p + rp qr p + q = A0 R pq pq q + q + r r + p p + qr qr + qp qr = A0 R0 = 1 1 = 1 = R.H.S Thus, L.H.S = R.H.S Hence proved

Ex 9.3, 1

Ex 9.3, 2

Ex 9.3, 3 Important

Ex 9.3, 4

Ex 9.3, 5

Ex 9.3, 6

Ex 9.3, 7

Ex 9.3, 8

Ex 9.3, 9

Ex 9.3, 10

Ex 9.3, 11 Important

Ex 9.3, 12

Ex 9.3, 13

Ex 9.3, 14

Ex 9.3, 15

Ex 9.3, 16

Ex 9.3, 17 Important

Ex 9.3, 18 Important

Ex 9.3, 19

Ex 9.3, 20

Ex 9.3, 21

Ex 9.3, 22 Important You are here

Ex 9.3, 23

Ex 9.3, 24

Ex 9.3, 25

Ex 9.3, 26

Ex 9.3, 27 Important

Ex 9.3, 28 Important

Ex 9.3, 29 Important

Ex 9.3, 30

Ex 9.3, 31

Ex 9.3, 32

Chapter 9 Class 11 Sequences and Series

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.