Ex 8.2

Ex 8.2, 1

Ex 8.2, 2

Ex 8.2, 3 Important

Ex 8.2, 4

Ex 8.2, 5 (a)

Ex 8.2, 5 (b) Important

Ex 8.2, 5 (c)

Ex 8.2, 6

Ex 8.2, 7 Important

Ex 8.2, 8

Ex 8.2, 9 Important

Ex 8.2, 10

Ex 8.2, 11 Important

Ex 8.2, 12

Ex 8.2, 13

Ex 8.2, 14 Important

Ex 8.2, 15

Ex 8.2, 16 Important

Ex 8.2, 17 Important

Ex 8.2, 18 Important

Ex 8.2, 19

Ex 8.2, 20

Ex 8.2, 21

Ex 8.2, 22 Important You are here

Ex 8.2, 23 Important

Ex 8.2, 24

Ex 8.2, 25

Ex 8.2, 26 Important

Ex 8.2, 27 Important

Ex 8.2, 28

Ex 8.2, 29 Important

Ex 8.2, 30 Important

Ex 8.2, 31

Ex 8.2, 32 Important

Chapter 8 Class 11 Sequences and Series

Serial order wise

Last updated at April 16, 2024 by Teachoo

Ex9.3, 22 If the pth ,qth and rth terms of a G.P. are a, b and c, respectively. Prove that aq r br p cp q = 1 We know that nth term of G.P = ARn 1 (We are using a, r in the question, so we use A for first term and R for common ratio) It is given that pth term of G.P = a Ap = a ARp 1 = a a = ARp 1 aq r = ("ARp 1")q r We need to show that aq r br p cp q = 1 Also, qth term of G.P = b Aq = b ARq 1 = b b = ARq 1 br p = (ARq 1)r p & rth term of G.P = c Ar = c ARr 1 = c c = ARr 1 cp q = (ARr 1)p q Now, our equations are aq r = ("ARp 1")q r (1) br p = (ARq 1)r p (2) & cp q = (ARr 1)p q (3) Taking L.H.S. aq r br p cp q Putting values from (1), (2) & (3) = ("ARp 1")q r (ARq 1)r p (ARr 1)p q = "Aq r R(p 1")(q r) "Ar p R(q 1")(r p) "Ap q R(r 1")(p q) = "Aq r Ar p Ap q " "R(p 1")(q r) "R(q 1")(r p) "R(r 1")(p q) = A(q r) + (r p) + (p q) R(p 1) (q - r) + (q 1) ( r - p) + (r 1) ( p-q) = A(q r) + (r p) + (p q) Rp(q r ) 1(q r) + q( r p) 1(r p) +r(p q) 1( p q) = A(q q) + (r r) + (p p) Rpq pr q + r + qr qp r + p + rp qr p + q = A0 R pq pq q + q + r r + p p + qr qr + qp qr = A0 R0 = 1 1 = 1 = R.H.S Thus, L.H.S = R.H.S Hence proved