Ex 8.2
Ex 8.2, 2
Ex 8.2, 3 Important
Ex 8.2, 4
Ex 8.2, 5 (a)
Ex 8.2, 5 (b) Important
Ex 8.2, 5 (c)
Ex 8.2, 6
Ex 8.2, 7 Important
Ex 8.2, 8
Ex 8.2, 9 Important
Ex 8.2, 10
Ex 8.2, 11 Important
Ex 8.2, 12
Ex 8.2, 13
Ex 8.2, 14 Important
Ex 8.2, 15
Ex 8.2, 16 Important
Ex 8.2, 17 Important
Ex 8.2, 18 Important
Ex 8.2, 19
Ex 8.2, 20
Ex 8.2, 21
Ex 8.2, 22 Important You are here
Ex 8.2, 23 Important
Ex 8.2, 24
Ex 8.2, 25
Ex 8.2, 26 Important
Ex 8.2, 27 Important
Ex 8.2, 28
Ex 8.2, 29 Important
Ex 8.2, 30 Important
Ex 8.2, 31
Ex 8.2, 32 Important
Last updated at April 16, 2024 by Teachoo
Ex9.3, 22 If the pth ,qth and rth terms of a G.P. are a, b and c, respectively. Prove that aq r br p cp q = 1 We know that nth term of G.P = ARn 1 (We are using a, r in the question, so we use A for first term and R for common ratio) It is given that pth term of G.P = a Ap = a ARp 1 = a a = ARp 1 aq r = ("ARp 1")q r We need to show that aq r br p cp q = 1 Also, qth term of G.P = b Aq = b ARq 1 = b b = ARq 1 br p = (ARq 1)r p & rth term of G.P = c Ar = c ARr 1 = c c = ARr 1 cp q = (ARr 1)p q Now, our equations are aq r = ("ARp 1")q r (1) br p = (ARq 1)r p (2) & cp q = (ARr 1)p q (3) Taking L.H.S. aq r br p cp q Putting values from (1), (2) & (3) = ("ARp 1")q r (ARq 1)r p (ARr 1)p q = "Aq r R(p 1")(q r) "Ar p R(q 1")(r p) "Ap q R(r 1")(p q) = "Aq r Ar p Ap q " "R(p 1")(q r) "R(q 1")(r p) "R(r 1")(p q) = A(q r) + (r p) + (p q) R(p 1) (q - r) + (q 1) ( r - p) + (r 1) ( p-q) = A(q r) + (r p) + (p q) Rp(q r ) 1(q r) + q( r p) 1(r p) +r(p q) 1( p q) = A(q q) + (r r) + (p p) Rpq pr q + r + qr qp r + p + rp qr p + q = A0 R pq pq q + q + r r + p p + qr qr + qp qr = A0 R0 = 1 1 = 1 = R.H.S Thus, L.H.S = R.H.S Hence proved