Last updated at Dec. 8, 2016 by Teachoo

Transcript

Ex 9.3, 8 Find the sum to n terms in the geometric progression √7 ,√21 ,3√7…… √7 ,√21 ,3√7…… Here, First term a = √7 Common ratio r = √21/√7 = √(7 × 3)/√7 = (√7 ×√3 )/√7 = √3 So r = √3 ≈ 1.73 Since, r > 1 ∴ Sn = (𝑎(𝑟^𝑛 − 1))/(𝑟 − 1) Sn = (𝑎(𝑟^𝑛 − 1))/(𝑟 − 1) where Sn = sum of n terms of GP n is the number of terms a is the first term r is the common ratio Now, Sum of n terms = (𝑎(𝑟^𝑛 − 1))/(𝑟 − 1) Putting values a = √7 , r =√3 Sn = (√7 ((√3)^𝑛−1))/(√3 − 1) Rationalizing the same = (√7 ((√3)n−1 )])/(√3 − 1) x (√3 + 1)/(√3 + 1) = (√7 (√3 𝑛 −1) (√3+ 1))/((√3 −1) (√3+ 1)) = (√7 (√3 𝑛 −1) (√3+ 1))/((√3 −1) (√3+ 1)) Using a2 – b2 = (a + b)(a – b) = (√7 (3^(1/2 𝑛) −1)(√3 +1))/((√3)2 − 1^2 ) =(√7 (3^(𝑛/2) − 1) (√3 + 1))/2 = √7/2(√3+1) (3^(𝑛/2)−1) Hence sum of n term is √7/2(√3+1) (3^(𝑛/2) −1)

Ex 9.3, 1

Ex 9.3, 2

Ex 9.3, 3 Important

Ex 9.3, 4

Ex 9.3, 5

Ex 9.3, 6

Ex 9.3, 7

Ex 9.3, 8 You are here

Ex 9.3, 9

Ex 9.3, 10

Ex 9.3, 11 Important

Ex 9.3, 12

Ex 9.3, 13

Ex 9.3, 14

Ex 9.3, 15

Ex 9.3, 16

Ex 9.3, 17 Important

Ex 9.3, 18 Important

Ex 9.3, 19

Ex 9.3, 20

Ex 9.3, 21

Ex 9.3, 22 Important

Ex 9.3, 23

Ex 9.3, 24

Ex 9.3, 25

Ex 9.3, 26

Ex 9.3, 27 Important

Ex 9.3, 28 Important

Ex 9.3, 29 Important

Ex 9.3, 30

Ex 9.3, 31

Ex 9.3, 32

Chapter 9 Class 11 Sequences and Series

Serial order wise

About the Author

CA Maninder Singh

CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .