Check sibling questions

Let f (x) = |sin x|. Then

(A) f is everywhere differentiable

(B) f is everywhere continuous but not differentiable at x = nπ, n∈ Z .

(C) f is everywhere continuous but not differentiable at x = (2n + 1) π/2, n∈ Z.

(d) None of these

This question is similar to Ex 5.1, 32 - Chapter 5 Class 12 and Ex 5.2, 9 - Chapter 5 Class 12 - Continuity and Differentiability

Slide90.JPG

Slide91.JPG
Slide92.JPG Slide93.JPG Slide94.JPG

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Question 20 Let f (x) = |sin x|. Then (A) f is everywhere differentiable (B) f is everywhere continuous but not differentiable at x = n𝜋, n∈ Z. (C) f is everywhere continuous but not differentiable at x = (2n + 1) 𝜋/2, n∈ Z. (d) None of these f(𝑥) = |sin 𝑥| We need to check continuity and differentiability of f(𝑥) Continuity of f(𝒙) Let 𝑔(𝑥)=|𝑥| & ℎ(𝑥)=sin⁡𝑥 Then, 𝒈𝒐𝒉(𝒙)=𝑔(ℎ(𝑥)) =𝑔(sin⁡𝑥 ) =|sin⁡𝑥 | =𝒇(𝒙) ∴ 𝑓(𝑥)=𝑔𝑜ℎ(𝑥) We know that, 𝒉(𝒙)=𝐬𝐢𝐧⁡𝒙 is continuous as sin is continuous 𝒈(𝒙)=|𝒙| is continuous as it is a modulus function Hence, g(𝑥) & h(𝑥) both are continuous And If two functions g(𝑥) & h(𝑥) are continuous then their composition 𝑔𝑜ℎ(𝑥) is also continuous ∴ 𝒇(𝒙) is continuous Differentiability of 𝒇(𝒙) 𝑓(𝑥)=|sin⁡𝑥 | Since, it is a modulus function so we check differentiability when sin⁡𝑥=0 i.e., 𝒙=𝒏𝝅, 𝒏∈𝒁 𝑓(𝑥) is differentiable at 𝑥=𝑛𝜋, if LHD = RHD (𝒍𝒊𝒎)┬(𝐡→𝟎) (𝒇(𝒙) − 𝒇(𝒙 − 𝒉))/𝒉 = (𝑙𝑖𝑚)┬(h→0) (𝑓(𝑛𝜋) − 𝑓(𝑛𝜋− ℎ))/ℎ = (𝑙𝑖𝑚)┬(h→0) (|sin⁡𝑛𝜋 | −|sin⁡〖(𝑛𝜋 − ℎ)〗 |)/ℎ = (𝑙𝑖𝑚)┬(h→0) (|0| − |sin⁡〖(𝑛𝜋 − ℎ)〗 |)/ℎ Using sin (A − B) = sin Acos B − cos Asin B = (𝑙𝑖𝑚)┬(h→0) (0 − |sin⁡〖𝑛𝜋 cos⁡〖ℎ − cos⁡〖𝑛𝜋 sin⁡ℎ 〗 〗 〗 |)/ℎ = (𝑙𝑖𝑚)┬(h→0) ( − |0 − cos⁡〖𝑛𝜋 sin⁡ℎ 〗 |)/ℎ = (𝑙𝑖𝑚)┬(h→0) ( −cos⁡〖𝑛𝜋 sin⁡ℎ 〗)/ℎ = −cos 𝑛𝜋 ×(𝑙𝑖𝑚)┬(h→0) sin⁡ℎ/ℎ Using (𝑙𝑖𝑚)┬(𝑥→0) 𝑠𝑖𝑛⁡𝑥/𝑥=1 =−cos 𝑛𝜋 ×1 =−𝐜𝐨𝐬 𝒏𝝅 (𝒍𝒊𝒎)┬(𝐡→𝟎) (𝒇(𝒙 + 𝒉) − 𝒇(𝒙 ))/𝒉 = (𝑙𝑖𝑚)┬(h→0) (𝑓(𝑛𝜋+ ℎ) − 𝑓(𝑛𝜋))/ℎ = (𝑙𝑖𝑚)┬(h→0) (|sin⁡〖(𝑛𝜋+ℎ)〗 |−|sin⁡𝑛𝜋 |)/ℎ = (𝑙𝑖𝑚)┬(h→0) (|sin⁡〖(𝑛𝜋+ℎ)〗 |−|0|)/( ℎ) Using sin (A + B) = sin Acos B + cos Asin B = (𝑙𝑖𝑚)┬(h→0) (|sin⁡〖𝑛𝜋 cos⁡〖ℎ + cos⁡〖𝑛𝜋 sin⁡ℎ 〗 〗 〗 | − 0)/ℎ = (𝑙𝑖𝑚)┬(h→0) |0 + cos⁡〖𝑛𝜋 sin⁡ℎ 〗 |/ℎ = (𝑙𝑖𝑚)┬(h→0) cos⁡〖𝑛𝜋 sin⁡ℎ 〗/ℎ = cos 𝑛𝜋 ×(𝑙𝑖𝑚)┬(h→0) sin⁡ℎ/ℎ Using (𝑙𝑖𝑚)┬(𝑥→0) 𝑠𝑖𝑛⁡𝑥/𝑥=1 = cos 𝑛𝜋 ×1 = 𝐜𝐨𝐬 𝒏𝝅 Since, LHD ≠ RHD ∴ 𝑓(𝑥) is not differentiable at 𝒙=𝒏𝝅 Hence, 𝑓(𝑥) is continuous everywhere but not differentiable at 𝒙∈𝒏𝝅, 𝑛∈𝑍 So, the correct answer is (B)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.