The value of c in Rolleβs Theorem for the function f (x) = e^x sin x,
xβ [0, Ο] is
(A) Ο/6Β (B) Ο/4Β
(C) Ο/2Β
(D) 3Ο/4
This question is similar to Ex 5.8, 1 - Chapter 5 Class 12 - Continuity and Differentiability




NCERT Exemplar - MCQs
Question 2 Important
Question 3
Question 4
Question 5
Question 6 Important
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important You are here
Question 12
Question 13
Question 14 Important
Question 15
Question 16 Important
Question 17
Question 18 Important
Question 19
Question 20 Important
Question 21
Question 22
Question 23 Important
Question 24
Question 25
Question 26 Important
Last updated at Nov. 17, 2021 by Teachoo
This question is similar to Ex 5.8, 1 - Chapter 5 Class 12 - Continuity and Differentiability
Question 11 The value of c in Rolleβs Theorem for the function f (x) = π^π₯ sin π₯, π₯β [0, π] is (A) π/6 (B) π/4 (C) π/2 (D) 3π/4 π (π₯)= π^π₯ sinβ‘γπ₯, π₯ β [0,π] γ First, we will check if the conditions of Rolleβs theorem are satisfied Condition 1 We need to check if π(π₯)=π^π₯ sinβ‘γπ₯ γis continuous at [π,π ] Let π(π)=ππ and π(π)=π¬π’π§β‘π We know that, π(π₯)=π^π₯ is continuous as it is an exponential function β(π₯)=sinβ‘π₯ is continous as sin is continuous at [π,π ] Hence, π(π)=π(π)π(π) is also continuous at [0,π] β΄ π(π)=π^π₯ sinβ‘π₯ is continuous at π₯β[0,π] Condition 2 We need to check if π(π₯)=π^π₯ sinβ‘π₯ is differentiable at (π,π ) A function is said to be differentiable if the derivative of the function exists. Differentiating π(π₯) wrt π₯ π^β² (π)=π^π πππβ‘π+π^π ππ¨π¬β‘π Since, derivative of the given function exists Hence, π(π) is differentiable at (0,π) Finding π(π) π(π₯)=π^π₯ sinβ‘π₯ π(π) = π^0 sinβ‘0 = π^0 (0) = 0 Findingπ(π ) π(π₯) = π^π₯ sinβ‘π₯ π(π ) = π^π sinβ‘π = π^π (0) = 0 Condition 3 Hence π(π) = π(π ) Now, π(π₯) = π^π₯ sinβ‘π₯ π^β² (π₯) =π^π₯ sinβ‘π₯+π^π₯ cosβ‘π₯ π^β² (π₯) =π^π₯ γ(sinγβ‘π₯+cosβ‘π₯) π^β² (π) = π^π γ(πππγβ‘π+πππβ‘π) Since all three condition satisfied π^β² (π) = 0 π^π γ(πππγβ‘π+πππβ‘π) = π Either, π^π=π It is not possible, since it is an exponential function. Or, γ(πππγβ‘π+πππβ‘π)=π sinβ‘c=βcosβ‘c Dividing by πππβ‘π on both sides sinβ‘c/cosβ‘c =βcosβ‘c/cosβ‘c πππ§β‘γπ=βπγ c=3Ο/4, 7Ο/4, β¦ Since, c β(0,Ο) β΄ c = ππ /π So, the correct answer is (D)