Check sibling questions


Transcript

Example 14 Show that tan 3π‘₯ tan 2π‘₯ tan π‘₯ = tan 3π‘₯ – tan 2π‘₯ – tan π‘₯ We know that πŸ‘π’™ = πŸπ’™+ 𝒙 Therefore, tan πŸ‘π’™ = 𝒕𝒂𝒏⁑(πŸπ’™ + 𝒙) tan⁑3π‘₯ = tan⁑〖2π‘₯ +γ€– tan〗⁑π‘₯ γ€—/(1βˆ’tan⁑〖2π‘₯ tan⁑π‘₯ γ€— ) " " tan⁑3π‘₯–tan⁑3π‘₯ tan⁑2π‘₯ tan⁑π‘₯=tan⁑2π‘₯+tan⁑π‘₯ tan⁑3π‘₯–tan⁑2π‘₯–tan⁑π‘₯=tan⁑3π‘₯ tan⁑2π‘₯ tan⁑π‘₯ π’•π’‚π’β‘πŸ‘π’™ π’•π’‚π’β‘πŸπ’™ 𝒕𝒂𝒏⁑𝒙 = π’•π’‚π’β‘πŸ‘π’™ – π’•π’‚π’β‘πŸπ’™ – 𝒕𝒂𝒏⁑𝒙

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo