Check sibling questions

 


Transcript

Ex 7.9, 9 The value of the integral โˆซ_(1/3)^1โ–’ใ€– (๐‘ฅ โˆ’๐‘ฅ^3 )^(1/3)/๐‘ฅ^4 ใ€— ๐‘‘๐‘ฅ is 6 (B) 0 (C) 3 (D) 4 โˆซ_(1/3)^1โ–’ใ€– (๐‘ฅ โˆ’ ๐‘ฅ^3 )^(1/3)/๐‘ฅ^4 ใ€— ๐‘‘๐‘ฅ Taking common ๐‘ฅ^3 from numerator = โˆซ_(1/3)^1โ–’ใ€– ((๐‘ฅ^3 )^(1/3) (1/๐‘ฅ^2 โˆ’1)^(1/3))/๐‘ฅ^4 ใ€— ๐‘‘๐‘ฅ = โˆซ_(1/3)^1โ–’ใ€– (๐‘ฅ (1/๐‘ฅ^2 โˆ’1)^(1/3))/๐‘ฅ^4 ใ€— ๐‘‘๐‘ฅ = โˆซ_(1/3)^1โ–’ใ€– ( (1/๐‘ฅ^2 โˆ’1)^(1/3))/๐‘ฅ^3 ใ€— ๐‘‘๐‘ฅ Let t = 1/๐‘ฅ^2 โˆ’1 ๐‘‘๐‘ก/๐‘‘๐‘ฅ=(โˆ’2)/๐‘ฅ^3 (โˆ’๐‘‘๐‘ก)/2=๐‘‘๐‘ฅ/๐‘ฅ^3 Thus, when x varies from 1/3 to 1, t varies form 0 to 8 Substituting values, โˆซ_(1/3)^1โ–’ใ€– ( (1/๐‘ฅ^2 โˆ’1)^(1/3))/๐‘ฅ^3 ใ€— ๐‘‘๐‘ฅ = 1/2 โˆซ_8^0โ–’ใ€–๐‘ก^(1/3) ๐‘‘๐‘กใ€— = (โˆ’1)/2 [๐‘ก^(1/3 + 1)/(1/3 + 1)]_8^0 = (โˆ’1)/2 [ใ€–3๐‘กใ€—^(4/3 )/4]_8^0 Putting limits = (โˆ’1)/2 (0โˆ’(3(8)^(4/3))/4) = 1/2 (3/4) (8)^(4/3) = 1/2 (3/4) (2^3 )^(4/3) = 1/2 (3/4) (2^4 ) = 6 So, (A) is the correct answer.

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo