Check sibling questions


Transcript

Ex 7.9, 6 Evaluate the integrals using substitution โˆซ_0^(2 )โ–’๐‘‘๐‘ฅ/(๐‘ฅ + 4 โˆ’ ๐‘ฅ^2 ) We can write โˆซ_0^2โ–’ใ€–๐‘‘๐‘ฅ/(๐‘ฅ + 4 โˆ’ ๐‘ฅ^2 )=โˆซ_0^2โ–’๐‘‘๐‘ฅ/(โˆ’(๐‘ฅ^2 โˆ’ ๐‘ฅ โˆ’ 4) )ใ€— =โˆ’โˆซ_0^2โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 โˆ’ ๐‘ฅ โˆ’ 4) =โˆ’โˆซ_0^2โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 โˆ’2 ร— 1/2 ร— ๐‘ฅ โˆ’ 4) =โˆ’โˆซ_0^2โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 โˆ’2 ร— 1/2 ร— ๐‘ฅ + 1/2^2 โˆ’ 1/2^2 โˆ’ 4) =โˆ’โˆซ_0^2โ–’๐‘‘๐‘ฅ/((๐‘ฅ โˆ’ 1/2)^2โˆ’ 1/4 โˆ’ 4) =โˆ’โˆซ_0^2โ–’๐‘‘๐‘ฅ/((๐‘ฅ โˆ’ 1/2)^2โˆ’ 17/4 ) =โˆ’โˆซ_0^2โ–’๐‘‘๐‘ฅ/((๐‘ฅ โˆ’ 1/2)^2โˆ’ (โˆš17/4)^2 ) Let ๐‘ก=๐‘ฅโˆ’1/2 Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ก/๐‘‘๐‘ฅ=1 ๐‘‘๐‘ก=๐‘‘๐‘ฅ When x varies from 0 to 2, then t varies from (โˆ’1)/2 to 3/2. Therefore, โˆ’โˆซ_0^2โ–’ใ€–๐‘‘๐‘ฅ/((๐‘ฅ โˆ’ 1/2)^2โˆ’(โˆš17/2)^2 )=โˆ’โˆซ_((โˆ’1)/2)^(3/2)โ–’๐‘‘๐‘ก/(๐‘ก โˆ’ (โˆš17/2)^2 )ใ€— =โˆ’[1/2(โˆš17/2) ๐‘™๐‘œ๐‘”|(๐‘ก โˆ’ โˆš17/2)/(๐‘ก + โˆš17/2)|]_((โˆ’1)/( 2))^(3/2) =โˆ’1/โˆš17 [๐‘™๐‘œ๐‘”|(3/2 โˆ’ โˆš17/2)/(3/2 + โˆš17/2)|+๐‘™๐‘œ๐‘”|((โˆ’1)/( 2) โˆ’ โˆš17/2)/((โˆ’1)/( 2) + โˆš17/2)|] =โˆ’1/โˆš17 [๐‘™๐‘œ๐‘”|(3 โˆ’ โˆš17)/(3 + โˆš17)|+๐‘™๐‘œ๐‘”|(โˆ’(1 + โˆš17))/(โˆ’(1 โˆ’ โˆš17) )|] =โˆ’1/โˆš17 ๐‘™๐‘œ๐‘”|((3 โˆ’ โˆš17)/(3 + โˆš17))/((1 + โˆš17)/(1 โˆ’ โˆš17))| =โˆ’1/โˆš17 ๐‘™๐‘œ๐‘”|(3 โˆ’ โˆš17)/(3 + โˆš17) ร—(1 โˆ’ โˆš17)/(1 + โˆš17)| =โˆ’1/โˆš17 ๐‘™๐‘œ๐‘”|(3+17 โˆ’ 3โˆš17 โˆ’ โˆš17)/(3 +17 + 3โˆš17 + โˆš17) | =โˆ’1/โˆš17 ๐‘™๐‘œ๐‘”|(20 โˆ’ 4โˆš17)/(20 + 4โˆš17) | =โˆ’1/โˆš17 ๐‘™๐‘œ๐‘”|4(5 โˆ’ โˆš17)/4(5 + โˆš17) | =โˆ’1/โˆš17 ๐‘™๐‘œ๐‘”|(5 โˆ’ โˆš17)/(5 + โˆš17) | =1/โˆš17 ๐‘™๐‘œ๐‘”|(5 โˆ’ โˆš17)/(5 + โˆš17) |^(โˆ’1) =1/โˆš17 ๐‘™๐‘œ๐‘”|(5 + โˆš17)/(5 โˆ’ โˆš17)| =1/โˆš17 ๐‘™๐‘œ๐‘”|(5 + โˆš17)/(5 โˆ’ โˆš17) ร—(5 + โˆš17)/(5 + โˆš17)| =1/โˆš17 ๐‘™๐‘œ๐‘”|(5 โˆ’ โˆš17)^2/(5^2 โˆ’ (โˆš17)^2 ) | =1/โˆš17 ๐‘™๐‘œ๐‘”|(25 + 17 + 10โˆš17)/(25 โˆ’ 17) | =1/โˆš17 ๐‘™๐‘œ๐‘”|(42 + 10โˆš17)/8 | =๐Ÿ/โˆš๐Ÿ๐Ÿ• ๐’๐’๐’ˆ|(๐Ÿ๐Ÿ + ๐Ÿ“โˆš๐Ÿ๐Ÿ•)/๐Ÿ’ |

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo