Ex 7.9, 4 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.9, 4 Evaluate the integrals using substitution โซ_0^2โใ๐ฅโ(๐ฅ+2)ใโกใ (๐๐ข๐ก ๐ฅ+2=๐ก^2 )ใ โซ_0^2โใ๐ฅโ(๐ฅ+2)ใโกใ ๐๐ฅใ Put ๐ฅ+2=๐ก^2 Differentiating w.r.t. ๐ฅ ๐(๐ฅ + 2)/๐๐ฅ=๐(๐ก^2 )/๐๐ก ร๐๐ก/๐๐ฅ 1=2๐ก ร ๐๐ก/๐๐ฅ ๐๐ฅ=2๐ก ๐๐ก Hence, when ๐ฅ varies from 0 to 2, then t varies from โ2 to 2 Therefore we can write โซ_0^2โใ๐ฅโ(๐ฅ+2) ๐๐ฅ =โซ_(โ2)^2โใ(๐ก^2โ2) โ(๐ก^2 ) 2๐ก ๐๐กใใ =โซ_(โ2)^2โใ(๐ก^2โ2)๐ก ร2๐ก ๐๐กใ =2โซ_(โ2)^2โใ(๐ก^2โ2) ๐ก^2 ๐๐กใ =2โซ_(โ2)^2โใ(๐ก^4โ2๐ก^2 ) ๐๐กใ =2[๐ก^(4+1)/(4+1)โ2 ๐ก^(2+1)/(2+1)]_(โ2)^2 =2[๐ก^5/5โ2 ๐ก^3/3]_(โ2)^2 =2ร [2^5/5โ2/3 2^3โ((โ2)^5/5โ2/3 (โ2)^3 )] =2ร [๐ฅ^5/2โ2/3 2^3โ((โ2)^5/2โ2/3 (โ2)^3 )] =2ร [32/5โ16/3โ(4โ2)/5+4/3 โ2] =2ร [(96 โ 80 โ 12โ2 + 20โ2)/15] =2ร [(16 + 8โ2)/15] =(2 ร 8 โ2 (โ2 + 1))/15 =(๐๐โ(๐ ) (โ๐ + ๐))/๐๐
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo