Ex 7.9, 2 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.9, 2 Evaluate the integrals using substitution β«_0^(π/2)βγβ(sinβ‘γ" " Ο" " γ ) cos^5β‘Ο πΟγ Let πΌ=β«_0^(π/2)βγβπ ππΟ cos^5β‘γΟ πΟγ γ πΌ=β«_0^(π/2)βγβπ ππΟ cos^4β‘γΟ πππ Ο πΟγ γ πΌ=β«_0^(π/2)βγβ(sinβ‘Ο ) (1βsin^2β‘Ο )^2 πππ Ο πΟγ Put π‘=sinβ‘Ο Differentiating w.r.t. Ο ππ‘/πΟ=π(sinβ‘Ο )/πΟ ππ‘/πΟ=cosβ‘Ο ππ‘/cosβ‘Ο =πΟ Hence, when Ο varies form 0 to π/2 , π‘ varies form 0 to 1 Hence we can write the integral as πΌ=β«_0^(π/2)βγβπ ππΟ (1βsin^2β‘Ο )^2 πππ Ο πΟγ =β«_0^1βγβπ‘ (1βπ‘^2 )^2 πππ Ο ππ‘/πππ Ογ =β«_0^1βγβπ‘ (1βπ‘^2 )^2 ππ‘γ =β«_0^1βγπ‘^(1/2) (1βγ2π‘γ^2+π‘^4 )ππ‘γ =β«_0^1βγ (π‘^(1/2)βγ2π‘γ^(2 + 1/2)+π‘^(4 + 1/2) ) ππ‘γ =β«_0^1βγπ‘^(1/2) ππ‘γβ2β«1βπ‘^(3/2) ππ‘+β«1βπ‘^(9/2) ππ‘ =[π‘^(1/2 +1)/(1/2 +1)]_0^1β2[π‘^(3/2 +1)/(3/2 +1)]_0^1+[π‘^(9/2 +1)/(9/2 +1)]_0^1 =[π‘^(3/2 )/(3/2)]_0^1β2[π‘^(7/2 )/(7/2)]_0^1+[π‘^(11/2 )/(11/2)]_0^1 =2/3 (1^(3/2)β0^(3/2) )β2 Γ 2/7 (1^(7/2)β0^(7/2) )+2/11 [1^(11/2)β0^(11/2) ] =2/3β4/7+2/11 =(2 Γ 7 Γ 11 β 4 Γ 3 Γ 11 + 2 Γ 3 Γ7)/(2 Γ 7 Γ 11) =(154 β 132 + 42)/231 =ππ/πππ
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo