Check sibling questions


Transcript

Ex 7.9, 1 Evaluate the integrals using substitution โˆซ_0^1โ–’ใ€–๐‘ฅ/(๐‘ฅ^2 + 1) ๐‘‘๐‘ฅใ€— We need to find โˆซ_๐ŸŽ^๐Ÿโ–’ใ€–๐’™/(๐’™^๐Ÿ + ๐Ÿ) ๐’…๐’™ใ€— Let ๐’•=๐’™^๐Ÿ+๐Ÿ Differentiating w.r.t. ๐‘ฅ ๐‘‘๐‘ก/๐‘‘๐‘ฅ=๐‘‘/๐‘‘๐‘ฅ (๐‘ฅ^2+1) ๐‘‘๐‘ก/๐‘‘๐‘ฅ=2๐‘ฅ ๐’…๐’•/๐Ÿ๐’™=๐’…๐’™ Now, when ๐’™ varies from 0 to 1 then ๐’• varies from 1 to 2 Therefore โˆซ_๐ŸŽ^๐Ÿโ–’ใ€–๐’™/(๐’™^๐Ÿ+๐Ÿ) ๐’…๐’™=โˆซ_๐Ÿ^๐Ÿโ–’ใ€–๐’™/๐’• ๐’…๐’•/๐Ÿ๐’™ใ€—ใ€— =1/2 โˆซ_1^2โ–’๐‘‘๐‘ก/๐‘ก =๐Ÿ/๐Ÿ [๐’๐’๐’ˆ|๐’•|]_๐Ÿ^๐Ÿ =1/2 [๐‘™๐‘œ๐‘”|2|โˆ’๐‘™๐‘œ๐‘”|1|] =1/2 [๐‘™๐‘œ๐‘”|2|โˆ’0] =1/2 ๐‘™๐‘œ๐‘”|2| =๐Ÿ/๐Ÿ ๐’๐’๐’ˆ ๐Ÿ

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo