Ex 5.5, 18 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.5, 18 If ๐ข , ๐ฃ and ๐ค are functions of ๐ฅ, then show that ๐/๐๐ฅ (๐ข . ๐ฃ . ๐ค ) = ๐๐ข/๐๐ฅ ๐ฃ. ๐ค+๐ข . ๐๐ฃ/๐๐ฅ . ๐ค+๐ข . ๐ฃ ๐๐ค/๐๐ฅ in two ways โ first by repeated application of product rule, second by logarithmic differentiation. By product Rule Let ๐ฆ=๐ข๐ฃ๐ค Differentiating both sides ๐ค.๐.๐ก.๐ฅ. (๐๐ฆ )/๐๐ฅ = ๐(๐ข ๐ฃ ๐ค)/๐๐ฅ (๐๐ฆ )/๐๐ฅ = ๐((๐ข๐ฃ) ๐ค)/๐๐ฅ Using product Rule in (๐ข๐ฃ). ๐ค (๐ข๐ฃ)โ = ๐ขโ๐ฃ + ๐ฃโ๐ข ๐๐ฆ/๐๐ฅ= ๐(๐ข๐ฃ)" " /๐๐ฅ . ๐ค + ๐(๐ค)" " /๐๐ฅ . (๐ข๐ฃ) ๐๐ฆ/๐๐ฅ= (๐(๐ข)" " /๐๐ฅ " . " ๐ฃ+ ๐(๐ฃ)" " /๐๐ฅ ๐ข)๐ค + ๐(๐ค)/๐๐ฅ . ๐ข๐ฃ ๐๐ฆ/๐๐ฅ = ๐๐ข/๐๐ฅ . ๐ฃ.๐ค+ ๐๐ฃ/๐๐ฅ . ๐ข.๐ค + ๐๐ค/๐๐ฅ . ๐ข๐ฃ ๐๐ฆ/๐๐ฅ = ๐๐ข/๐๐ฅ . ๐ฃ.๐ค+๐ข ๐๐ฃ/๐๐ฅ .๐ค+๐ข.๐ฃ. ๐๐ค/๐๐ฅ Hence , (๐ "(" ๐ . ๐" . " ๐")" )/๐ ๐ = ๐ ๐/๐ ๐ . ๐.๐+๐ ๐ ๐/๐ ๐ .๐+๐.๐. ๐ ๐/๐ ๐ Again Using product Rule in ๐ข๐ฃ (๐ข๐ฃ)โ = ๐ขโ๐ฃ + ๐ฃโ๐ข Using logarithmic differentiation. Let ๐ฆ=๐ข๐ฃ๐ค Taking log both sides log ๐ฆ = log (๐ข๐ฃ๐ค) log ๐ฆ=log ๐ข+ใlog ใโก๐ฃ+logโก๐ค Differentiating both sides ๐ค.๐.๐ก.๐ฅ. ๐(logโก๐ฆ )/๐๐ฅ = ๐(log ๐ข + ใlog ใโก๐ฃ + logโก๐ค )/๐๐ฅ ๐(logโก๐ฆ )/๐๐ฅ . ๐๐ฆ/๐๐ฆ = ๐(log ๐ข)/๐๐ฅ + ๐(ใlog ใโก๐ฃ )/๐๐ฅ + ๐(logโก๐ค )/๐๐ฅ (As log (ab) = log a + log b) ๐(logโก๐ฆ )/๐๐ฆ . ๐๐ฆ/๐๐ฅ = ๐(log ๐ข)/๐๐ฅ + ๐(ใlog ใโก๐ฃ )/๐๐ฅ + ๐(logโก๐ค )/๐๐ฅ 1/๐ฆ . ๐๐ฆ/๐๐ฅ = 1/๐ข . ๐(๐ข)/๐๐ฅ + 1/๐ฃ. ๐(๐ฃ)/๐๐ฅ + 1/๐ค . ๐(๐ค)/๐๐ฅ ๐๐ฆ/๐๐ฅ = ๐ฆ (1/๐ข . ๐๐ข/๐๐ฅ + 1/๐ฃ. ๐๐ฃ/๐๐ฅ + 1/๐ค . ๐๐ค/๐๐ฅ) ๐๐ฆ/๐๐ฅ = ๐ข๐ฃ๐ค (1/๐ข . ๐๐ข/๐๐ฅ + 1/๐ฃ. ๐๐ฃ/๐๐ฅ + 1/๐ค . ๐๐ค/๐๐ฅ) ๐๐ฆ/๐๐ฅ = ๐ข๐ฃ๐ค . 1/๐ข . ๐๐ข/๐๐ฅ + ๐ข๐ฃ๐ค . 1/๐ฃ. ๐๐ฃ/๐๐ฅ + ๐ข๐ฃ๐ค . 1/๐ค. ๐๐ค/๐๐ฅ ๐๐ฆ/๐๐ฅ = ๐ฃ๐ค . ๐๐ข/๐๐ฅ + ๐ข๐ค . ๐๐ฃ/๐๐ฅ + ๐ข๐ฃ . ๐๐ค/๐๐ฅ (๐ "(" ๐ . ๐" . " ๐")" )/๐ ๐ = ๐ ๐/๐ ๐ . ๐๐+๐ . ๐ ๐/๐ ๐ .๐+๐.๐. ๐ ๐/๐ ๐
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18 You are here
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo