Check sibling questions


Transcript

Ex 5.5, 18 If ๐‘ข , ๐‘ฃ and ๐‘ค are functions of ๐‘ฅ, then show that ๐‘‘/๐‘‘๐‘ฅ (๐‘ข . ๐‘ฃ . ๐‘ค ) = ๐‘‘๐‘ข/๐‘‘๐‘ฅ ๐‘ฃ. ๐‘ค+๐‘ข . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ . ๐‘ค+๐‘ข . ๐‘ฃ ๐‘‘๐‘ค/๐‘‘๐‘ฅ in two ways โˆ’ first by repeated application of product rule, second by logarithmic differentiation. By product Rule Let ๐‘ฆ=๐‘ข๐‘ฃ๐‘ค Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. (๐‘‘๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘(๐‘ข ๐‘ฃ ๐‘ค)/๐‘‘๐‘ฅ (๐‘‘๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘((๐‘ข๐‘ฃ) ๐‘ค)/๐‘‘๐‘ฅ Using product Rule in (๐‘ข๐‘ฃ). ๐‘ค (๐‘ข๐‘ฃ)โ€™ = ๐‘ขโ€™๐‘ฃ + ๐‘ฃโ€™๐‘ข ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= ๐‘‘(๐‘ข๐‘ฃ)" " /๐‘‘๐‘ฅ . ๐‘ค + ๐‘‘(๐‘ค)" " /๐‘‘๐‘ฅ . (๐‘ข๐‘ฃ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= (๐‘‘(๐‘ข)" " /๐‘‘๐‘ฅ " . " ๐‘ฃ+ ๐‘‘(๐‘ฃ)" " /๐‘‘๐‘ฅ ๐‘ข)๐‘ค + ๐‘‘(๐‘ค)/๐‘‘๐‘ฅ . ๐‘ข๐‘ฃ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ . ๐‘ฃ.๐‘ค+ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ . ๐‘ข.๐‘ค + ๐‘‘๐‘ค/๐‘‘๐‘ฅ . ๐‘ข๐‘ฃ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ . ๐‘ฃ.๐‘ค+๐‘ข ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ .๐‘ค+๐‘ข.๐‘ฃ. ๐‘‘๐‘ค/๐‘‘๐‘ฅ Hence , (๐’…"(" ๐’– . ๐’—" . " ๐’˜")" )/๐’…๐’™ = ๐’…๐’–/๐’…๐’™ . ๐’—.๐’˜+๐’– ๐’…๐’—/๐’…๐’™ .๐’˜+๐’–.๐’—. ๐’…๐’˜/๐’…๐’™ Again Using product Rule in ๐‘ข๐‘ฃ (๐‘ข๐‘ฃ)โ€™ = ๐‘ขโ€™๐‘ฃ + ๐‘ฃโ€™๐‘ข Using logarithmic differentiation. Let ๐‘ฆ=๐‘ข๐‘ฃ๐‘ค Taking log both sides log ๐‘ฆ = log (๐‘ข๐‘ฃ๐‘ค) log ๐‘ฆ=log ๐‘ข+ใ€–log ใ€—โก๐‘ฃ+logโก๐‘ค Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘(log ๐‘ข + ใ€–log ใ€—โก๐‘ฃ + logโก๐‘ค )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ = ๐‘‘(log ๐‘ข)/๐‘‘๐‘ฅ + ๐‘‘(ใ€–log ใ€—โก๐‘ฃ )/๐‘‘๐‘ฅ + ๐‘‘(logโก๐‘ค )/๐‘‘๐‘ฅ (As log (ab) = log a + log b) ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘(log ๐‘ข)/๐‘‘๐‘ฅ + ๐‘‘(ใ€–log ใ€—โก๐‘ฃ )/๐‘‘๐‘ฅ + ๐‘‘(logโก๐‘ค )/๐‘‘๐‘ฅ 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/๐‘ข . ๐‘‘(๐‘ข)/๐‘‘๐‘ฅ + 1/๐‘ฃ. ๐‘‘(๐‘ฃ)/๐‘‘๐‘ฅ + 1/๐‘ค . ๐‘‘(๐‘ค)/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฆ (1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ + 1/๐‘ฃ. ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + 1/๐‘ค . ๐‘‘๐‘ค/๐‘‘๐‘ฅ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ข๐‘ฃ๐‘ค (1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ + 1/๐‘ฃ. ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + 1/๐‘ค . ๐‘‘๐‘ค/๐‘‘๐‘ฅ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ข๐‘ฃ๐‘ค . 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘ข๐‘ฃ๐‘ค . 1/๐‘ฃ. ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘ข๐‘ฃ๐‘ค . 1/๐‘ค. ๐‘‘๐‘ค/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฃ๐‘ค . ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘ข๐‘ค . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘ข๐‘ฃ . ๐‘‘๐‘ค/๐‘‘๐‘ฅ (๐’…"(" ๐’– . ๐’—" . " ๐’˜")" )/๐’…๐’™ = ๐’…๐’–/๐’…๐’™ . ๐’—๐’˜+๐’– . ๐’…๐’—/๐’…๐’™ .๐’˜+๐’–.๐’—. ๐’…๐’˜/๐’…๐’™

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo