Ex 5.5, 17 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.5, 17 Differentiate (๐ฅ^2 โ 5๐ฅ + 8) (๐ฅ^3 + 7๐ฅ + 9) (ii) by expanding the product to obtain a single polynomial.By Expanding the product to obtain a single polynomial . ๐ฆ=(๐ฅ^2 " โ 5" ๐ฅ" + 8" ) (๐ฅ^3 " + 7" ๐ฅ" + 9" ) ๐ฆ=๐ฅ^2 (๐ฅ^3 " + 7" ๐ฅ" + 9" )" โ 5" ๐ฅ(๐ฅ^3 " + 7" ๐ฅ" + 9" )" + 8 " (๐ฅ^3 " + 7" ๐ฅ" + 9" ) ๐ฆ=๐ฅ^5+7๐ฅ^3+9๐ฅ^2โ5๐ฅ^4โ35๐ฅ^2โ45๐ฅ+8๐ฅ^3+56๐ฅ+72 ๐ฆ=๐ฅ^5โ5๐ฅ^4+15๐ฅ^3โ26๐ฅ^2+11๐ฅ+72 Differentiating both sides ๐ค.๐.๐ก.๐ฅ. ๐๐ฆ/๐๐ฅ = (๐(๐ฅ^5 โ 5๐ฅ^4 + 15๐ฅ^3โ 26๐ฅ^2 + 11๐ฅ + 72" " )" " )/๐๐ฅ ๐๐ฆ/๐๐ฅ = (๐(๐ฅ^5))/๐๐ฅ โ (๐(5๐ฅ^4))/๐๐ฅ + (๐(15๐ฅ^3)" " )/๐๐ฅ โ (๐(26๐ฅ^2)" " )/๐๐ฅ + (๐(11๐ฅ)" " )/๐๐ฅ + (๐(72)" " )/๐๐ฅ ๐๐ฆ/๐๐ฅ = 5๐ฅ^4โ20๐ฅ^3+45๐ฅ^2โ52๐ฅ+11 + 0 ๐ ๐/๐ ๐ = ๐๐^๐โ๐๐๐^๐+๐๐๐^๐โ๐๐๐+๐๐ Ex 5.5, 17 Differentiate (๐ฅ^2โ 5 ๐ฅ + 8) (๐ฅ^3 + 7 ๐ฅ + 9) (iii) by logarithmic differentiation.By logarithmic differentiation ๐ฆ= (๐ฅ^2 "โ 5 " ๐ฅ" + 8" ) (๐ฅ^3 " + 7 " ๐ฅ" + 9" ) Taking log both sides log ๐ฆ = log ((๐ฅ^2 " โ 5" ๐ฅ" + 8" ) (๐ฅ^3 " + 7" ๐ฅ" + 9" )) log ๐ฆ=log (๐ฅ^2 " โ 5" ๐ฅ" + 8" )+ใlog ใโก(๐ฅ^3 " + 7" ๐ฅ" + 9" ) Differentiating both sides ๐ค.๐.๐ก.๐ฅ. (๐(logโก๐ฆ ) )/๐๐ฅ = ๐(log (๐ฅ^2 " โ " 5๐ฅ" + " 8) + ใlog ใโก(๐ฅ^3 " + " 7๐ฅ" +" 9) )/๐๐ฅ (๐(logโก๐ฆ ) )/๐๐ฅ . ๐๐ฆ/๐๐ฆ = ๐(log (๐ฅ^2 " โ " 5๐ฅ" + " 8))/๐๐ฅ + ๐(ใlog ใโก(๐ฅ^3 " + " 7๐ฅ" +" 9) )/๐๐ฅ (๐(logโก๐ฆ ) )/๐๐ฆ . ๐๐ฆ/๐๐ฅ = 1/((๐ฅ^2 " โ " 5๐ฅ" + " 8) ) . ๐(๐ฅ^2 " โ " 5๐ฅ" + " 8)/๐๐ฅ + 1/((๐ฅ^3 " + " 7๐ฅ" +" 9) ) . ๐(๐ฅ^3 " + " 7๐ฅ" +" 9)/๐๐ฅ (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = 1/(๐ฅ^2 " โ " 5๐ฅ" + " 8) . (2x โ 5 + 0) + 1/(๐ฅ^3 " + " 7๐ฅ" +" 9) .(3x2 + 7 + 0) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5))/(๐ฅ^2 " โ " 5๐ฅ" + " 8) + ((3๐ฅ^2 + 7))/(๐ฅ^3 " + " 7๐ฅ" +" 9) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) ) ๐๐ฆ/๐๐ฅ = ๐ฆ(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) ๐๐ฆ/๐๐ฅ =(๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9)(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" + " 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) (๐(logโก๐ฆ ) )/๐๐ฅ . ๐๐ฆ/๐๐ฆ = ๐(log (๐ฅ^2 " โ " 5๐ฅ" + " 8))/๐๐ฅ + ๐(ใlog ใโก(๐ฅ^3 " + " 7๐ฅ" +" 9) )/๐๐ฅ (๐(logโก๐ฆ ) )/๐๐ฆ . ๐๐ฆ/๐๐ฅ = 1/((๐ฅ^2 " โ " 5๐ฅ" + " 8) ) . ๐(๐ฅ^2 " โ " 5๐ฅ" + " 8)/๐๐ฅ + 1/((๐ฅ^3 " + " 7๐ฅ" +" 9) ) . ๐(๐ฅ^3 " + " 7๐ฅ" +" 9)/๐๐ฅ (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = 1/(๐ฅ^2 " โ " 5๐ฅ" + " 8) . (2x โ 5 + 0) + 1/(๐ฅ^3 " + " 7๐ฅ" +" 9) .(3x2 + 7 + 0) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5))/(๐ฅ^2 " โ " 5๐ฅ" + " 8) + ((3๐ฅ^2 + 7))/(๐ฅ^3 " + " 7๐ฅ" +" 9) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) ) ๐๐ฆ/๐๐ฅ = ๐ฆ(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) ๐๐ฆ/๐๐ฅ =(๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9)(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" + " 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) (๐(logโก๐ฆ ) )/๐๐ฅ . ๐๐ฆ/๐๐ฆ = ๐(log (๐ฅ^2 " โ " 5๐ฅ" + " 8))/๐๐ฅ + ๐(ใlog ใโก(๐ฅ^3 " + " 7๐ฅ" +" 9) )/๐๐ฅ (๐(logโก๐ฆ ) )/๐๐ฆ . ๐๐ฆ/๐๐ฅ = 1/((๐ฅ^2 " โ " 5๐ฅ" + " 8) ) . ๐(๐ฅ^2 " โ " 5๐ฅ" + " 8)/๐๐ฅ + 1/((๐ฅ^3 " + " 7๐ฅ" +" 9) ) . ๐(๐ฅ^3 " + " 7๐ฅ" +" 9)/๐๐ฅ (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = 1/(๐ฅ^2 " โ " 5๐ฅ" + " 8) . (2x โ 5 + 0) + 1/(๐ฅ^3 " + " 7๐ฅ" +" 9) .(3x2 + 7 + 0) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5))/(๐ฅ^2 " โ " 5๐ฅ" + " 8) + ((3๐ฅ^2 + 7))/(๐ฅ^3 " + " 7๐ฅ" +" 9) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) ) ๐๐ฆ/๐๐ฅ = ๐ฆ(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) ๐๐ฆ/๐๐ฅ =(๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9)(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" + " 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) (๐(logโก๐ฆ ) )/๐๐ฅ . ๐๐ฆ/๐๐ฆ = ๐(log (๐ฅ^2 " โ " 5๐ฅ" + " 8))/๐๐ฅ + ๐(ใlog ใโก(๐ฅ^3 " + " 7๐ฅ" +" 9) )/๐๐ฅ (๐(logโก๐ฆ ) )/๐๐ฆ . ๐๐ฆ/๐๐ฅ = 1/((๐ฅ^2 " โ " 5๐ฅ" + " 8) ) . ๐(๐ฅ^2 " โ " 5๐ฅ" + " 8)/๐๐ฅ + 1/((๐ฅ^3 " + " 7๐ฅ" +" 9) ) . ๐(๐ฅ^3 " + " 7๐ฅ" +" 9)/๐๐ฅ (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = 1/(๐ฅ^2 " โ " 5๐ฅ" + " 8) . (2x โ 5 + 0) + 1/(๐ฅ^3 " + " 7๐ฅ" +" 9) .(3x2 + 7 + 0) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5))/(๐ฅ^2 " โ " 5๐ฅ" + " 8) + ((3๐ฅ^2 + 7))/(๐ฅ^3 " + " 7๐ฅ" +" 9) (1 )/๐ฆ . ๐๐ฆ/๐๐ฅ = ((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) ) ๐๐ฆ/๐๐ฅ = ๐ฆ(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" +" 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) )) ๐๐ฆ/๐๐ฅ =(๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9)(((2๐ฅ โ 5) (๐ฅ^3 " + " 7๐ฅ" + " 9) + (3๐ฅ^2 + 7) (๐ฅ^2 " โ " 5๐ฅ" + " 8))/((๐ฅ^2 " โ " 5๐ฅ" + " 8) (๐ฅ^3 " + " 7๐ฅ" +" 9) ))
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important You are here
Ex 5.5, 18
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo