Check sibling questions


Transcript

Ex 5.5, 16 Find the derivative of the function given by f (๐‘ฅ) = (1 + ๐‘ฅ) (1 + ๐‘ฅ^2) (1 + ๐‘ฅ^4) (1 + ๐‘ฅ8) and hence find f โ€ฒ(1) .Given ๐‘“(๐‘ฅ)=(1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 )" " Let ๐‘ฆ=(1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) Taking log both sides log ๐‘ฆ = log (1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) log ๐‘ฆ = log (1+๐‘ฅ)+logโก(1+๐‘ฅ^2 )+logโก(1+๐‘ฅ^4 ) ใ€–+ logใ€—โกใ€– (1+๐‘ฅ^8 )ใ€— Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘(log (1 + ๐‘ฅ) + logโก(1 + ๐‘ฅ^2 ) + logโก(1 + ๐‘ฅ^4 )+ logโกใ€– (1 + ๐‘ฅ^8 )ใ€— )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘(log (1 + ๐‘ฅ))/๐‘‘๐‘ฅ + ๐‘‘(logโก(1 + ๐‘ฅ^2 ) )/๐‘‘๐‘ฅ + ๐‘‘(logโก(1 + ๐‘ฅ^4 ) )/๐‘‘๐‘ฅ + ๐‘‘(logโกใ€– (1 + ๐‘ฅ^8 )ใ€— )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(1 + ๐‘ฅ) . ๐‘‘(1 + ๐‘ฅ)/๐‘‘๐‘ฅ + 1/((1 + ๐‘ฅ^2 ) ) . ๐‘‘(1 + ๐‘ฅ^2 )/๐‘‘๐‘ฅ + 1/((1 + ๐‘ฅ^4 ) ) . ๐‘‘(1 + ๐‘ฅ^4 )/๐‘‘๐‘ฅ + 1/((1 + ๐‘ฅ^8 ) ) . ๐‘‘(1 + ๐‘ฅ^8 )/๐‘‘๐‘ฅ 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(1 + ๐‘ฅ) . (0+1) + 1/((1 + ๐‘ฅ^2 ) ) . (0+2๐‘ฅ) + 1/((1 + ๐‘ฅ^4 ) ) . (0+4๐‘ฅ^3 ) + 1/((1 + ๐‘ฅ^8 ) ) . (0+8๐‘ฅ^7 ) 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(1 + ๐‘ฅ) + 2๐‘ฅ/(1 + ๐‘ฅ^2 ) + (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) + (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฆ (1/(1 + ๐‘ฅ) " + " 2๐‘ฅ/(1 + ๐‘ฅ^2 ) " + " (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) " + " (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 )) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) (1/(1 + ๐‘ฅ) " + " 2๐‘ฅ/(1 + ๐‘ฅ^2 ) " + " (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) " +" (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 )) Hence, ๐’‡โ€ฒ(๐’™) = (๐Ÿ+๐’™)(๐Ÿ+๐’™^๐Ÿ )(๐Ÿ+๐’™^๐Ÿ’ )(๐Ÿ+๐’™^๐Ÿ– ) (๐Ÿ/(๐Ÿ + ๐’™) " + " ๐Ÿ๐’™/(๐Ÿ + ๐’™^๐Ÿ ) " + " (๐Ÿ’๐’™^๐Ÿ‘)/(๐Ÿ + ๐’™^๐Ÿ’ ) " + " (๐Ÿ–๐’™^๐Ÿ•)/(๐Ÿ + ๐’™^๐Ÿ– )) We need to find ๐‘“โ€ฒ(1) Putting ๐‘ฅ=1 ๐‘“โ€ฒ(1) = (1+1)(1+(1)^2 )(1+(1)^4 )(1+ใ€–(1)ใ€—^8 ) (1/(1 +1) " + " 2(1)/(1+(1)^2 ) " + " (4(1)^3)/(1 + (1)^4 ) " + " (8(1)^7)/(1 + (1)^8 )) = 2(1+1)(1+1)(1+1) (1/(1 + 1) " + " 2/(1 + 1) " + " 4/(1 + 1) " + " 8/(1 + 1)) = 2(2)(2)(2) (1/2 " + " 2/2 " + " 4/2 " + " 8/2) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) (1/(1 + ๐‘ฅ) " + " 2๐‘ฅ/(1 + ๐‘ฅ^2 ) " + " (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) " +" (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 )) Hence, ๐’‡โ€ฒ(๐’™) = (๐Ÿ+๐’™)(๐Ÿ+๐’™^๐Ÿ )(๐Ÿ+๐’™^๐Ÿ’ )(๐Ÿ+๐’™^๐Ÿ– ) (๐Ÿ/(๐Ÿ + ๐’™) " + " ๐Ÿ๐’™/(๐Ÿ + ๐’™^๐Ÿ ) " + " (๐Ÿ’๐’™^๐Ÿ‘)/(๐Ÿ + ๐’™^๐Ÿ’ ) " + " (๐Ÿ–๐’™^๐Ÿ•)/(๐Ÿ + ๐’™^๐Ÿ– )) We need to find ๐‘“โ€ฒ(1) Putting ๐‘ฅ=1 ๐‘“โ€ฒ(1) = (1+1)(1+(1)^2 )(1+(1)^4 )(1+ใ€–(1)ใ€—^8 ) (1/(1 +1) " + " 2(1)/(1+(1)^2 ) " + " (4(1)^3)/(1 + (1)^4 ) " + " (8(1)^7)/(1 + (1)^8 )) = 2(1+1)(1+1)(1+1) (1/(1 + 1) " + " 2/(1 + 1) " + " 4/(1 + 1) " + " 8/(1 + 1)) = 2(2)(2)(2) (1/2 " + " 2/2 " + " 4/2 " + " 8/2)

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo