Check sibling questions


Transcript

Ex 5.5, 14 Find 𝑑𝑦/𝑑π‘₯ of the functions in, γ€–(cos⁑〖π‘₯ γ€—)γ€—^𝑦 = γ€–(cos⁑〖𝑦 γ€—)γ€—^π‘₯Given γ€–(cos⁑π‘₯)γ€—^𝑦 = γ€–(cos⁑𝑦)γ€—^π‘₯ Taking log both sides log γ€–(cos⁑π‘₯)γ€—^𝑦 = log γ€–(cos⁑𝑦)γ€—^π‘₯ 𝑦 . log (cos⁑π‘₯)=π‘₯.log⁑〖(cos⁑𝑦)γ€— Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. (𝑑(𝑦 . log (cos⁑π‘₯)))/𝑑π‘₯ = 𝑑(π‘₯.γ€– log〗⁑〖(cos⁑𝑦)γ€— )/𝑑π‘₯ (As π‘™π‘œπ‘”β‘(π‘Ž^𝑏 )=𝑏 . π‘™π‘œπ‘”β‘π‘Ž) Finding (𝒅(π’š . π’π’π’ˆ (𝒄𝒐𝒔⁑𝒙)))/𝒅𝒙 (𝑑(𝑦 . π‘™π‘œπ‘” (π‘π‘œπ‘ β‘π‘₯)))/𝑑π‘₯ = (𝑑(𝑦))/𝑑π‘₯ . log co𝑠⁑π‘₯ + (𝑑(π‘™π‘œπ‘” (π‘π‘œπ‘ β‘π‘₯)))/𝑑π‘₯ . 𝑦 = 𝑑𝑦/𝑑π‘₯ . log co𝑠⁑π‘₯ + 1/π‘π‘œπ‘ β‘π‘₯ . 𝑑(π‘π‘œπ‘ β‘π‘₯ )/𝑑π‘₯ . 𝑦 = 𝑑𝑦/𝑑π‘₯ . log co𝑠⁑π‘₯ + 1/π‘π‘œπ‘ β‘π‘₯ . (βˆ’sin⁑π‘₯ ) . 𝑦 = 𝑑𝑦/𝑑π‘₯ . log co𝑠⁑π‘₯ + ((βˆ’sin⁑π‘₯ ))/π‘π‘œπ‘ β‘π‘₯ . 𝑦 = 𝑑𝑦/𝑑π‘₯ . log co𝑠⁑π‘₯βˆ’tan⁑π‘₯. 𝑦 Using product Rule As (𝑒𝑣)’ = 𝑒’𝑣 + 𝑣’𝑒 Finding 𝒅(𝒙.γ€– π’π’π’ˆγ€—β‘γ€–(π’„π’π’”β‘π’š)γ€— )/𝒅𝒙 𝑑(π‘₯.γ€– π‘™π‘œπ‘”γ€—β‘γ€–(π‘π‘œπ‘ β‘π‘¦)γ€— )/𝑑π‘₯ = (𝑑(π‘₯))/𝑑π‘₯ . log co𝑠⁑𝑦 + (𝑑(π‘™π‘œπ‘” (π‘π‘œπ‘ β‘π‘¦)))/𝑑π‘₯ . π‘₯ = log co𝑠⁑𝑦 + 1/π‘π‘œπ‘ β‘π‘¦ . 𝑑(π‘π‘œπ‘ β‘π‘¦ )/𝑑π‘₯ . π‘₯ = log co𝑠⁑𝑦 + 1/π‘π‘œπ‘ β‘π‘¦ . 𝑑(π‘π‘œπ‘ β‘π‘¦ )/𝑑π‘₯ . 𝑑𝑦/𝑑𝑦 . π‘₯ = log co𝑠⁑𝑦 + 1/π‘π‘œπ‘ β‘π‘¦ . 𝑑(π‘π‘œπ‘ β‘π‘¦ )/𝑑𝑦 . 𝑑𝑦/𝑑π‘₯ . π‘₯ Using product Rule As (𝑒𝑣)’ = 𝑒’𝑣 + 𝑣’𝑒 = log co𝑠⁑𝑦 + 1/π‘π‘œπ‘ β‘π‘¦ . (βˆ’sin⁑𝑦) . 𝑑𝑦/𝑑π‘₯ . π‘₯ = log co𝑠⁑𝑦 + βˆ’tan⁑𝑦 . π‘₯ . 𝑑𝑦/𝑑π‘₯ Now , (𝑑(𝑦 . log (cos⁑π‘₯)))/𝑑π‘₯ = 𝑑(π‘₯.γ€– log〗⁑〖(cos⁑𝑦)γ€— )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ log co𝑠⁑π‘₯βˆ’tan⁑π‘₯. 𝑦 = log co𝑠⁑𝑦 βˆ’ tan⁑𝑦 . π‘₯ . 𝑑𝑦/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ log co𝑠⁑π‘₯βˆ’π‘¦ . tan⁑π‘₯ = log co𝑠⁑𝑦 βˆ’ π‘₯ . tan⁑𝑦 . 𝑑𝑦/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ log co𝑠⁑π‘₯+π‘₯ tan 𝑑𝑦/𝑑π‘₯ = log co𝑠⁑𝑦 + 𝑦 tan⁑π‘₯ 𝑑𝑦/𝑑π‘₯ (log co𝑠⁑π‘₯+π‘₯ tan 𝑦) = log co𝑠⁑𝑦 + 𝑦 tan⁑π‘₯ π’…π’š/𝒅𝒙 = (π₯𝐨𝐠 π’„π’π’”β‘π’š " + " π’š 𝒕𝒂𝒏⁑𝒙)/(π₯𝐨𝐠 𝒄𝒐𝒔⁑𝒙 + 𝒙 𝐭𝐚𝐧 π’š)

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo