Ex 5.5, 10 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.5, 10 Differentiate the functions in, π₯^(π₯ πππ β‘π₯ ) + (π₯2+ 1)/(π₯2β 1)Let y = π₯^(π₯ πππ β‘π₯ ) + (π₯2+ 1)/(π₯2β 1) Let π’ =π₯^(π₯ πππ β‘π₯ ) & π£ =(π₯2+ 1)/(π₯2β 1) β΄ π¦ = π’+π£ Differentiating both sides π€.π.π‘.π₯. ππ¦/ππ₯ = (π (π’ + π£))/ππ₯ ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Calculating π π/π π π’ =π₯^(π₯ πππ β‘π₯ ) Taking log both sides logβ‘π’=logβ‘γπ₯^(π₯ πππ β‘π₯ ) γ logβ‘π’=π₯ πππ β‘π₯. logβ‘γ π₯γ Differentiating both sides π€.π.π‘.π₯. (π(logβ‘π’))/ππ₯ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ (π(logβ‘π’))/ππ₯ . ππ’/ππ’ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ (π(logβ‘π’))/ππ’ . ππ’/ππ₯ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ (As πππβ‘(π^π) = π . πππβ‘π) 1/π’ . ππ’/ππ₯ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ 1/π’ . ππ’/ππ₯ = π(π₯ cosβ‘π₯ )/ππ₯ logβ‘π₯ + π₯ πππ β‘π₯ (π(logβ‘π₯))/ππ₯ 1/π’ . ππ’/ππ₯ = π(π₯ cosβ‘π₯ )/ππ₯ logβ‘π₯ + π₯ πππ β‘π₯ Γ1/π₯ 1/π’ . ππ’/ππ₯ = [π(π₯)/ππ₯ cosβ‘π₯+π₯ π(cosβ‘π₯ )/ππ₯]logβ‘π₯ + πππ β‘π₯ 1/π’ . ππ’/ππ₯ = [cosβ‘π₯βπ₯ π ππ π₯]logβ‘π₯ + πππ β‘π₯ 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯ β π₯ sin π₯ logβ‘π₯+cosβ‘π₯ Using product Rule As (π’π£)β = π’βπ£ + π£βπ’ Where u = x cos x, v = log x 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯+cosβ‘π₯β π₯ sin π₯ logβ‘π₯ 1/π’ ππ’/ππ₯ = cosβ‘π₯ (logβ‘π₯+1)βπ₯ sinβ‘γπ₯ logβ‘π₯ γ ππ’/ππ₯ = u (cosβ‘π₯ (logβ‘π₯+1)βπ₯ sinβ‘γπ₯ logβ‘π₯ γ ) ππ’/ππ₯ = π₯^(π₯ πππ β‘π₯ ) (cosβ‘γ (logβ‘γπ₯+1γ )βπ₯ sinβ‘γπ₯ logβ‘π₯ γ γ ) Calculating π π/π π π£= (π₯2 + 1)/(π₯2 β 1) Differentiating both sides π€.π.π‘.π₯. π(π£)/ππ₯ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ π(π£)/ππ₯ . ππ£/ππ£ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ π(π£)/ππ£ . ππ£/ππ₯ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ 1. ππ£/ππ₯ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ ππ£/ππ₯ = (π(π₯2+ 1)/ππ₯ . (π₯^2 β 1) β π(π₯^2 β 1)/ππ₯ . (π₯2+ 1))/(π₯^2 β 1)^2 ππ£/ππ₯ = ((2π₯ + 0) (π₯^2 β1) β (2π₯ β 0) (π₯^2 + 1))/(π₯^2 β1)^2 Using quotient rule (π’/π£)β² = (π’^β² π£ β π£^β² π’)/π£^2 ππ£/ππ₯ = (2π₯ (π₯^2 β1) β 2π₯ (π₯^2 + 1))/(π₯^2 β1)^2 ππ£/ππ₯ = (2π₯ (π₯^2 β1 βπ₯^2 β1))/(π₯^2 β1)^2 ππ£/ππ₯ = (2π₯ (β 2))/(π₯^2 β1)^2 ππ£/ππ₯ = (β4π₯)/(π₯^2 β1)^2 Now ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Putting value of ππ’/ππ₯ & ππ£/ππ₯ π π/π π = π^γπ ππ¨π¬γβ‘π (ππ¨π¬β‘γπ (π+π₯π¨π β‘π ) βπ π¬π’π§β‘γπ π₯π¨π β‘π γ γ ) β ππ/(π^π βπ)^π
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important You are here
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo