Ex 5.5, 9 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.5, 9 Differentiate the functions in, π₯^sinβ‘π₯ + γ(sinβ‘π₯)γ^cosβ‘π₯ Let y = π₯^sinβ‘π₯ + γ(sinβ‘π₯)γ^cosβ‘γπ₯ γ Let π’ =π₯^sinβ‘π₯ & π£ =γ(sinβ‘π₯)γ^cosβ‘π₯ β΄ π¦ = π’ + π£ Differentiating both sides π€.π.π‘.π₯. ππ¦/ππ₯ = (π (π’ + π£))/ππ₯ ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Calculating π π/π π π’ =π₯^sinβ‘π₯ Taking log both sides logβ‘π’=logβ‘γπ₯^sinβ‘π₯ γ logβ‘π’= sinβ‘π₯. logβ‘γ π₯γ Differentiating both sides π€.π.π‘.π₯. (π(logβ‘π’))/ππ₯ = π(sinβ‘π₯. logβ‘γ π₯γ )/ππ₯ (π(logβ‘π’))/ππ₯ . ππ’/ππ’ = π(sinβ‘π₯. logβ‘γ π₯γ )/ππ₯ 1/π’ . ππ’/ππ₯ = π(sinβ‘π₯ . logβ‘γ π₯γ )/ππ₯ (As πππβ‘(π^π) = π . πππβ‘π) Using product Rule As (π’π£)β = π’βπ£ + π£βπ’ 1/π’ . ππ’/ππ₯ = π(sinβ‘π₯ )/ππ₯ . logβ‘π₯ + π(logβ‘π₯ )/ππ₯ . sin π₯ 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯ + 1/π₯ . sin π₯ 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯ + (sin π₯" " )/π₯ ππ’/ππ₯ = u(cosβ‘γπ₯ .logβ‘γπ₯+ sinβ‘π₯/π₯γ γ ) ππ’/ππ₯ = π₯^sinβ‘π₯ (cosβ‘γπ₯ .logβ‘γπ₯+ sinβ‘π₯/π₯γ γ ). ππ’/ππ₯ = π₯^sinβ‘π₯ (γsinβ‘π₯/π₯ +cosγβ‘γπ₯ .logβ‘π₯ γ ) Calculating π π/π π π£= (sinβ‘π₯ )^cosβ‘π₯ Taking log both sides logβ‘π£ = logβ‘γ γ. sinγβ‘π₯γ^(cos π₯) logβ‘π£=cosβ‘π₯. log sinβ‘π₯ Differentiating both sides π€.π.π‘.π₯. (π(logβ‘π£))/ππ₯ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ (π(logβ‘π£))/ππ₯ . ππ£/ππ£ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ (π(logβ‘π£))/ππ£ . ππ£/ππ₯ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ (As πππβ‘(π^π) = π . πππβ‘π) 1/π£ . ππ£/ππ₯ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ 1/π£ . ππ£/ππ₯ = π(cosβ‘π₯ )/ππ₯ . logβ‘sinβ‘π₯ + π(logβ‘sinβ‘π₯ )/ππ₯ . cosβ‘π₯ 1/π£ . ππ£/ππ₯ = βsinβ‘π₯ . logβ‘sinβ‘π₯ + (1/sinβ‘π₯ . π(sinβ‘π₯ )/ππ₯) . cosβ‘π₯ 1/π£ . ππ£/ππ₯ = βsinβ‘π₯ . logβ‘sinβ‘π₯ + (1/sinβ‘π₯ .cosβ‘π₯ ) . cosβ‘π₯ 1/π£ . ππ£/ππ₯ = βsinβ‘π₯ . logβ‘sinβ‘π₯ + (cotβ‘π₯ ) . cosβ‘π₯ ππ£/ππ₯ = π£(βsinβ‘π₯ " " . logβ‘sinβ‘π₯" +" cotβ‘π₯ ". " cosβ‘π₯) ππ£/ππ₯ = (sinβ‘π₯ )^cosβ‘π₯ (coπ β‘π₯ ". " coπ‘β‘π₯βsinβ‘π₯ " " . logβ‘sinβ‘π₯) using product Rule As (π’π£)β = π’βπ£ + π£βπ’ Now ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Putting value of ππ’/ππ₯ & ππ£/ππ₯ π π/π π = π^π¬π’π§β‘π (π¬π’π§β‘π/π+ππ¨π¬β‘γπ .π₯π¨π β‘π γ ) + (π¬π’π§β‘π )^ππ¨π¬β‘π (ππ¨π¬β‘π .ππ¨πβ‘πβπ¬π’π§β‘π π₯π¨π β‘π¬π’π§β‘π )
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important You are here
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo