Check sibling questions


Transcript

Ex 5.5, 7 Differentiate the functions in, ใ€–(logโกใ€–๐‘ฅ)ใ€—ใ€—^๐‘ฅ + ๐‘ฅ^logโก๐‘ฅ Let ๐‘ฆ = ใ€–(logโกใ€–๐‘ฅ)ใ€—ใ€—^๐‘ฅ+ ๐‘ฅ^logโก๐‘ฅ Let ๐‘ข = ใ€–(logโกใ€–๐‘ฅ)ใ€—ใ€—^๐‘ฅ , ๐‘ฃ = ๐‘ฅ^logโก๐‘ฅ ๐‘ฆ = ๐‘ข+๐‘ฃ Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘ (๐‘ข + ๐‘ฃ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ Calculating ๐’…๐’–/๐’…๐’™ ๐‘ข = ใ€–(logโกใ€–๐‘ฅ)ใ€—ใ€—^๐‘ฅ Taking log both sides logโก๐‘ข = log ใ€–(logโกใ€–๐‘ฅ)ใ€—ใ€—^๐‘ฅ logโก๐‘ข = ๐‘ฅ . log (logโกใ€–๐‘ฅ)ใ€— Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (๐‘‘(๐‘ฅ . log (logโกใ€–๐‘ฅ)ใ€— ) )/๐‘‘๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" ๐‘‘(๐‘ฅ)/๐‘‘๐‘ฅ . log (log" " ๐‘ฅ) + ๐‘‘(log (log" " ๐‘ฅ))/๐‘‘๐‘ฅ ร— ๐‘ฅ Using product Rule As (๐‘ข๐‘ฃ)โ€™ = ๐‘ขโ€™๐‘ฃ + ๐‘ฃโ€™๐‘ข 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" 1 . log (log" " ๐‘ฅ) + (1/(log" " ๐‘ฅ) .๐‘‘(log" " ๐‘ฅ)/๐‘‘๐‘ฅ) ร— ๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (log" " ๐‘ฅ) + (1/(log" " ๐‘ฅ) . 1/๐‘ฅ) ร— ๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (log" " ๐‘ฅ) + 1/logโก๐‘ฅ ร— ๐‘ฅ/๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (log" " ๐‘ฅ) + 1/logโก๐‘ฅ ๐‘‘๐‘ข/๐‘‘๐‘ฅ " =" ๐‘ข (log (log" " ๐‘ฅ)" + " 1/logโก๐‘ฅ ) ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (logโก๐‘ฅ )^๐‘ฅ (log (log" " ๐‘ฅ)" + " 1/logโก๐‘ฅ ) ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (logโก๐‘ฅ )^๐‘ฅ ((logโกใ€–๐‘ฅ . ใ€–log ใ€—โก(logโก๐‘ฅ ) +ใ€— 1)/logโก๐‘ฅ ) ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (logโก๐‘ฅ )^๐‘ฅ/logโก๐‘ฅ (logโกใ€–๐‘ฅ . ใ€–log ใ€—โก(logโก๐‘ฅ )+ใ€— 1) ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (logโก๐‘ฅ )^(๐‘ฅ โˆ’1) (logโกใ€–๐‘ฅ . ใ€–log ใ€—โก(logโก๐‘ฅ )+ใ€— 1) Calculating ๐’…๐’—/๐’…๐’™ ๐‘ฃ = ๐‘ฅ^logโก๐‘ฅ Taking log both sides . logโก๐‘ฃ=logโกใ€– (๐‘ฅ^logโก๐‘ฅ )ใ€— logโก๐‘ฃ = log ๐‘ฅ . logโก๐‘ฅ logโก๐‘ฃ = (logโก๐‘ฅ )^2 (As ๐‘™๐‘œ๐‘”โก(๐‘Ž^๐‘ )=๐‘ . ๐‘™๐‘œ๐‘”โก๐‘Ž) Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฅ = (๐‘‘(logโก๐‘ฅ )^2)/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฅ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฃ = (๐‘‘(logโก๐‘ฅ )^2)/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = (๐‘‘(logโก๐‘ฅ )^2)/๐‘‘๐‘ฅ 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = (๐‘‘(logโก๐‘ฅ )^2)/๐‘‘๐‘ฅ 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = 2 logโก๐‘ฅ . ๐‘‘(logโก๐‘ฅ )/๐‘‘๐‘ฅ 1/๐‘ฃ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = 2 logโก๐‘ฅ . 1/๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฃ ((2 logโก๐‘ฅ)/๐‘ฅ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฅ^logโก๐‘ฅ ((2 logโก๐‘ฅ)/๐‘ฅ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฅ^logโก๐‘ฅ /๐‘ฅ (2 logโก๐‘ฅ ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฅ^(logโก๐‘ฅ โˆ’ 1) . 2 logโก๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ใ€–2๐‘ฅใ€—^(logโก๐‘ฅ โˆ’ 1) . logโก๐‘ฅ Hence ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ Putting value of ๐‘‘๐‘ข/๐‘‘๐‘ฅ & ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = (๐ฅ๐จ๐ โก๐’™ )^(๐’™ โˆ’๐Ÿ) (๐Ÿ+๐ฅ๐จ๐ โก๐’™.๐ฅ๐จ๐ โก(๐ฅ๐จ๐ โก๐’™ ) ) + ใ€–๐Ÿ๐’™ใ€—^(๐’๐’๐’ˆ ๐’™ โˆ’๐Ÿ). ๐’๐’๐’ˆโก๐’™

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo