Check sibling questions


Transcript

Example 20 find the value of tan πœ‹/8. tan 𝝅/πŸ– Putting Ο€ = 180Β° = tan (180Β°)/8 = tan (πŸ’πŸ“Β°)/𝟐 We find tan (45Β°)/2 using tan 2x formula tan 2x = (2 tan⁑π‘₯)/(1 βˆ’π‘‘π‘Žπ‘›2π‘₯) Putting x = (πŸ’πŸ“Β°)/𝟐 tan ("2 Γ— " (45Β°)/2) = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) tan 45Β° = (𝟐 𝒕𝒂𝒏⁑〖 (πŸ’πŸ“Β°)/πŸγ€—)/(𝟏 βˆ’π’•π’‚π’πŸ (πŸ’πŸ“Β°)/𝟐) tan 45Β° = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 – tan2 (45Β°)/2 = 2tan (45Β°)/2 Let tan (πŸ’πŸ“Β°)/𝟐 = x So, our equation becomes 1 – x2 = 2x 0 = 2x + x2 – 1 x2 + 2x – 1 = 0 The above equation is of the form ax2 + bx + c = 0 where a = 1, b = 2, c = βˆ’1 Solution are x = (βˆ’ 𝑏 Β± √(𝑏2 βˆ’4π‘Žπ‘) )/2π‘Ž = (βˆ’ 2 Β± √((βˆ’2)2 βˆ’ 4 Γ— 1 Γ— (βˆ’1)) )/(2 Γ— 1) = (βˆ’2 Β± √(4 + 4))/2 = (βˆ’πŸ Β± βˆšπŸ–)/𝟐 = (βˆ’2 Β± √(2 Γ— 2 Γ— 2))/2 = (βˆ’2 Β± 2√2)/2 = (2 ( βˆ’1 ±√2 ))/2 = –1 Β± √𝟐 Thus, x = –1 Β± √2 tan (πŸ’πŸ“Β°)/𝟐 = –1 Β± √𝟐 But tan (πŸ’πŸ“Β°)/𝟐 = –1 – √𝟐 is not possible as (45Β°)/2 = 22.5Β° lies in first quadrant & tan is positive in first quadrant Therefore, tan (45Β°)/2 = βˆ’1 + √2 i.e. tan 𝝅/πŸ– = √𝟐 – 1

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo