
Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Dividing two polynomials
Ex 14.3, 4 (i)
Ex 14.3, 4 (v) Important
Ex 14.3, 4 (iv)
Ex 14.3, 4 (ii) Important
Ex 14.3, 4 (iii)
Ex 14.3, 3 (i)
Ex 14.3, 3 (ii)
Ex 14.3, 3 (iii) Important
Ex 14.3, 3 (iv)
Ex 14.3, 3 (v) Important
Ex 14.3, 5 (i)
Ex 14.3, 5 (ii) Important
Ex 14.3, 5 (iii)
Ex 14.3, 5 (iv) Important
Ex 14.3, 5 (v)
Ex 14.3, 5 (vi) You are here
Ex 14.3, 5 (vii) Important
Example 15 Important
Example 16
Last updated at Dec. 26, 2018 by Teachoo
Ex 14.3, 5 Factorise the expressions and divide them as directed. (vi) 12xy(9π₯^2 β 16π¦^2) Γ· 4xy(3x + 4y) We first factorise 12xy (γ9π₯γ^2β16π¦^2) = 12xy [(γ3π₯γ^2) β (γ4π¦γ^2)] We first factorise 12xy (γ9π₯γ^2β16π¦^2) = 12xy [(γ3π₯γ^2) β (γ4π¦γ^2)] Using π^2 β π^2 = (a + b) (a β b) Here π= 3x and b = 4y Using π^2 β π^2 = (a + b) (a β b) Here π= 3x and b = 4y = (12π₯π¦ (9π₯^2 β 16π¦^2))/(4π₯π¦ (3π₯ + 4π¦)) = (12π₯π¦ (3π₯ + 4π¦) (3π₯ β 4π¦))/(4π₯π¦ (3π₯ + 4π¦)) = 12/4 Γ π₯π¦/π₯π¦ Γ ((3π₯ + 4π¦))/((3π₯ + 4π¦)) Γ (3x β 4y) = 3 (3x β 4y)