
Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Dividing two polynomials
Ex 14.3, 4 (i)
Ex 14.3, 4 (v) Important
Ex 14.3, 4 (iv)
Ex 14.3, 4 (ii) Important
Ex 14.3, 4 (iii)
Ex 14.3, 3 (i)
Ex 14.3, 3 (ii)
Ex 14.3, 3 (iii) Important
Ex 14.3, 3 (iv)
Ex 14.3, 3 (v) Important
Ex 14.3, 5 (i)
Ex 14.3, 5 (ii) Important
Ex 14.3, 5 (iii)
Ex 14.3, 5 (iv) Important
Ex 14.3, 5 (v) You are here
Ex 14.3, 5 (vi)
Ex 14.3, 5 (vii) Important
Example 15 Important
Example 16
Last updated at Dec. 26, 2018 by Teachoo
Ex 14.3, 5 Factorise the expressions and divide them as directed. (v) 5pq(π^2 β π^2) Γ· 2p(p + q) We first factorise 5pq (π^2βπ^2 ) Using π^2 β π^2 = (a + b) (a β b) Here π= p and b = q = 5pq (p + q) (p β q) Dividing 5pq (π^2βπ^2 )Γ·2π (π+π) = (5ππ (π^2 β π^2))/(2π (π + π)) = (5ππ (π + π) (π β π))/(2π (π + π)) = 5/2 Γ π/π Γ q Γ ((π + π))/((π + π)) Γ (p β q) = 5/2 Γ q Γ (p β q) = π/π q (p β q)