We know the identities
Let’s factorise using these identities
x 2 + 4x + 4
x 2 + 4x + 4
= x 2 + 4 + 4x
= x 2 + (2) 2 + 2 × 2 × x
Using (a + b) 2 = a 2 + b 2 + 2ab
Where a = x , b = 2
= (x + 2) 2
4x 2 + 12x + 9
4x 2 + 12x + 9
= 4x 2 + 9 + 12x
= (2x) 2 + 3 2 + 2 × 2x × 3
Using (a+b) 2 = a 2 + b 2 + 2ab
Where a = 2x, b = 3
= (2 x + 3 ) 2
x 2 − 4x + 4
x 2 – 4x + 4
= x 2 + 4 – 4x
= x 2 + (2) 2 – 2 × 2 × x
Using (a - b) 2 = a 2 + b 2 – 2ab
Where a = x, b = 2
= (x - 2) 2
4x 2 – 12x + 9
4x 2 – 12x + 9
= 4x 2 + 9 – 12x
= (2x) 2 + 3 2 – 2 × 2x × 3
Using (a - b) 2 = a 2 + b 2 – 2ab
Where a = 2x, b = 3
= (2 x - 3 ) 2
4x 2 − 9
4x 2 − 9
= (2x) 2 − 3 2
Using a 2 - b 2 = (a - b) (a + b)
Where a = 2x, b = 3
= (2𝑥 − 3) (2𝑥 + 3)
y 4 − 16
y 4 − 16
= (y 2 ) 2 − (4) 2
Using a 2 - b 2 = (a - b) (a + b)
Where a = y 2 , b = 4
= (y 2 - 4) (y 2 + 4)
= (y 2 - 2 2 ) (y 2 + 4)
Using a 2 - b 2 = (a - b) (a + b)
Where a = y 2 , b = 4
= (y − 2) (y + 2) (y 2 + 4)