Ex 1.1
Ex 1.1, 1 (ii)
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6 You are here
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii)
Ex 1.1, 10 (iii) Important
Ex 1.1, 10 (iv)
Ex 1.1, 10 (v)
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 1.1, 6 Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive R = {(1, 2), (2, 1)} Check Reflexive If the relation is reflexive, then (a, a) ∈ R for every a ∈ {1,2,3} Since (1, 1) ∉ R ∴ R is not reflexive Check symmetric To check whether symmetric or not, If (a, b) ∈ R, then (b, a) ∈ R Here (1, 2) ∈ R , & (2, 1) ∈ R ∴ R is symmetric Check transitive To check whether transitive or not, If (a, b) ∈ R & (b, c) ∈ R , then (a, c) ∈ R Here, (1, 2) ∈ R and (2, 1) ∈ R but (1, 1) ∉ R. ∴ R is not transitive Hence, R is symmetric but neither reflexive nor transitive.