Check sibling questions

Slide2.JPG

Slide3.JPG
Slide4.JPG Slide5.JPG Slide6.JPG Slide7.JPG

This video is only available for Teachoo black users

This video is only available for Teachoo black users

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 1.2, 1 Show that the function f: R* → R* defined by f(x) = 1/x is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R*? Solving for f: R* → R* f(x) = 1/x Checking one-one f (x1) = 1/𝑥1 f (x2) = 1/𝑥2 Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 Putting f (x1) = f (x2) 1/x1 = 1/x2 x2 = x1 Hence, if f(x1) = f(x2) , x1 = x2 ∴ f is one-one Check onto f: R* → R* f(x) = 1/𝑥 Let y = f(x) , such that y ∈ R* y = 1/𝑥 Show that the function f: R* → R* defined by f(x) = 1/x is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R*? Now, domain R* is replaced by N , codomain remains R* Hence f : N → R* f(x) = 1/x Checking one-one f (x1) = 1/x1 f (x2) = 1/x2 f (x1) = f (x2) Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 1/x1 = 1/x2 x2 = x1 Hence, if f(x1) = f(x2) , x1 = x2 ∴ f is one-one Check onto f: N → R* f(x) = 1/x Let y = f(x) , , such that y ∈ R* y = 1/𝑥 x = 1/𝑦 Since y is real number except 0, x cannot always be a natural number Example For y = 2 x = 1/2 So, x is not a natural number Hence, f is not onto

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.