Slide1.JPG

Slide2.JPG
Slide3.JPG
Slide4.JPG
Slide5.JPG Slide6.JPG


Transcript

Misc 1 Show that function f: R → {x ∈ R: −1 < x < 1} defined by f(x) = x/(1 + |𝑥| ) , x ∈ R is one-one and onto function. f: R → {x ∈ R: −1 < x < 1} f(x) = x/(1 + |𝑥| ) We know that |𝑥| = {█( 𝑥 , 𝑥≥0 @−𝑥 , 𝑥<0)┤ So, 𝑓(𝑥)={█(𝑥/(1 + 𝑥), 𝑥≥0@&𝑥/(1 − 𝑥), 𝑥<0)┤ For x ≥ 0 f(x1) = 𝑥_1/(1 + 𝑥_1 ) f(x2) = 𝑥_2/(1 + 𝑥_2 ) Putting f(x1) = f(x2) 𝑥_1/(1 + 𝑥_1 ) = 𝑥_2/(1 + 𝑥_2 ) 𝑥_1 (1 + 𝑥_2)= 𝑥_2 (1 + 𝑥_1) 𝑥_1+𝑥_1 𝑥_2= 𝑥_2 +𝑥_2 𝑥_1 𝑥_1= 𝑥_2 For x < 0 f(x1) = 𝑥_1/(1 − 𝑥_1 ) f(x2) = 𝑥_2/(1 − 𝑥_2 ) Putting f(x1) = f(x2) 𝑥_1/(1 − 𝑥_1 ) = 𝑥_2/(1 − 𝑥_2 ) 𝑥_1 (1 − 𝑥_2)= 𝑥_2 (1 − 𝑥_1) 𝑥_1−𝑥_1 𝑥_2= 𝑥_2 −𝑥_2 𝑥_1 𝑥_1= 𝑥_2 Hence, if f(x1) = f(x2) , then x1 = x2 ∴ f is one-one Checking onto 𝑓(𝑥)={█(𝑥/(1 + 𝑥), 𝑥≥0@&𝑥/(1 − 𝑥), 𝑥<0)┤ For x ≥ 0 f(x) = 𝑥/(1 + 𝑥) Let f(x) = y, "y = " 𝑥/(1 + 𝑥) y(1 + x) = x y + xy = x y = x – xy x – xy = y x(1 – y) = y x = 𝑦/(1 − 𝑦) For x < 0 f(x) = 𝑥/(1 − 𝑥) Let f(x) = y "y = " 𝑥/(1 − 𝑥) y(1 – x) = x y – xy = x y = x + xy x + xy = y x(1 + y) = y x = 𝑦/(1 + 𝑦) Thus, x = 𝑦/(1 − 𝑦) , for x ≥ 0 & x = 𝑦/(1 + 𝑦) , for x < 0 Here, y ∈ {x ∈ R: −1 < x < 1} i.e. Value of y is from –1 to 1 , – 1 < y < 1 If y = 1, x = 𝑦/(1 − 𝑦) will be not defined, If y = –1, x = 𝑦/(1 + 𝑦) will be not defined, But here – 1 < y < 1 So, x is defined for all values of y. & x ∈ R ∴ f is onto Hence, f is one-one and onto.

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.