Solve all your doubts with Teachoo Black (new monthly pack available now!)

Miscellaneous

Misc 1
Deleted for CBSE Board 2023 Exams

Misc 2 Deleted for CBSE Board 2023 Exams

Misc 3 Important Deleted for CBSE Board 2023 Exams

Misc. 4 Important

Misc 5

Misc 6 Deleted for CBSE Board 2023 Exams

Misc 7 Deleted for CBSE Board 2023 Exams

Misc. 8 Important You are here

Misc 9 Important Deleted for CBSE Board 2023 Exams

Misc 10 Important

Misc 11 (i) Important Deleted for CBSE Board 2023 Exams

Misc 11 (ii)

Misc 12 Deleted for CBSE Board 2023 Exams

Misc 13 Important Deleted for CBSE Board 2023 Exams

Misc 14 Important Deleted for CBSE Board 2023 Exams

Misc 15

Misc 16 (MCQ) Important

Misc 17 (MCQ) Important

Misc 18

Misc 19 (MCQ) Important Deleted for CBSE Board 2023 Exams

Chapter 1 Class 12 Relation and Functions

Serial order wise

Last updated at Jan. 30, 2020 by Teachoo

Misc 8 (Introduction) Given a non empty set X, consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows: For subsets A, B in P(X), ARB if and only if A â B. Is R an equivalence relation on P(X)? Justify you answer: Taking an example Let X = {1, 2, 3} P(X) = Power set of X = Set of all subsets of X = { ð, {1} , {2} , {3}, {1, 2} , {2, 3} , {1, 3}, {1, 2, 3} } Since {1} â {1, 2} âī {1} R {1, 2} If A â B, all elements of A are in B Misc 8 Given a non empty set X, consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows: For subsets A, B in P(X), ARB if and only if A â B. Is R an equivalence relation on P(X)? Justify you answer: ARB means A â B Here, relation is R = {(A, B): A & B are sets, A â B} Check reflexive Since every set is a subset of itself, A â A âī (A, A) â R. âīR is reflexive. Check symmetric To check whether symmetric or not, If (A, B) â R, then (B, A) â R If (A, B) â R, A â B. But, B â A is not true Example: Let A = {1} and B = {1, 2}, As all elements of A are in B, A â B But all elements of B are not in A (as 2 is not in A), So B â A is not true âī R is not symmetric. If A â B, all elements of A are in B Checking transitive Since (A, B) â R & (B, C) â R If, A â B and B â C. then A â C â (A, C) â R So, If (A, B) â R & (B, C) â R , then (A, C) â R âī R is transitive. Hence, R is reflexive and transitive but not symmetric. Hence, R is not an equivalence relation since it is not symmetric.