Check sibling questions

Ex 1.1, 1 - Determine reflexive, symmetric, transitive - To prove relation reflexive/trasitive/symmetric/equivalent

Ex 1.1, 1 - Chapter 1 Class 12 Relation and Functions - Part 2
Ex 1.1, 1 - Chapter 1 Class 12 Relation and Functions - Part 3

This video is only available for Teachoo black users

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!


Transcript

Ex 1.1, 1 Determine whether each of the following relations are reflexive, symmetric and transitive: (i) Relation R in the set A = {1, 2, 3 13, 14} defined as R = {(x, y): 3x y = 0} R = {(x, y): 3x y = 0} So, 3x y = 0 3x = y y = 3x where x, y A R = {(1, 3), (2, 6), (3, 9), (4, 12)} Check Reflexive If the relation is reflexive, then (a, a) R for every a A i.e. {1, 2, 3 13, 14} Since (1, 1) R ,(2, 2) R , (3, 3) R , . (14, 14) R R is not reflexive Check symmetric To check whether symmetric or not, If (a, b) R, then (b, a) R Here (1, 3) R , but (3, 1) R R is not symmetric Check transitive To check whether transitive or not, If (a,b) R & (b,c) R , then (a,c) R Here, (1, 3) R and (3, 9) R but (1, 9) R. R is not transitive Hence, R is neither reflexive, nor symmetric, nor transitive.

Ask a doubt (live)
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.