Last updated at Aug. 11, 2021 by

Transcript

Ex 1.1,10 Given an example of a relation. Which is (ii) Transitive but neither reflexive nor symmetric. Let R = {(a, b): a < b} Check reflexive Since a cannot be less than a a a So, (a, a) R R is not reflexive. Check symmetric If a < b , then b cannot be less than a i.e. b a So, if (a, b) R , (b, a) R R is not symmetric Check transitive If a < b & b < c, then a < c So, if (a, b) R, (b, c) R, then (a, c) R R is transitive. Hence, relation R is transitive but not reflexive and symmetric.

Ex 1.1

Ex 1.1, 1 (i)

Ex 1.1, 1 (ii)

Ex 1.1, 1 (iii) Important

Ex 1.1, 1 (iv)

Ex 1.1, 1 (v)

Ex 1.1, 2

Ex 1.1, 3

Ex 1.1, 4

Ex 1.1, 5 Important

Ex 1.1, 6

Ex 1.1, 7

Ex 1.1, 8

Ex 1.1, 9 (i)

Ex 1.1, 9 (ii)

Ex 1.1, 10 (i)

Ex 1.1, 10 (ii) You are here

Ex 1.1, 10 (iii) Important

Ex 1.1, 10 (iv)

Ex 1.1, 10 (v)

Ex 1.1, 11

Ex 1.1, 12 Important

Ex 1.1, 13

Ex 1.1, 14

Ex 1.1, 15 (MCQ) Important

Ex 1.1, 16 (MCQ)

Chapter 1 Class 12 Relation and Functions (Term 1)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.